Introduction. The accuracy of hexapod circular external fixator deformity correction is contingent on the precision of radiographic analysis during the planning stage. The aim of this study was to compare the
Introduction & Aims. In other medical fields,
Introduction. Evaluation of post-operative soft tissue balancing outcomes after Total Knee Arthroplasty (TKA) and other procedures can be measured by stability tests, with Anterior-Posterior (AP) drawer tests and Varus-Valgus (VV) ligamentous laxity tests being particularly important. AP stability can be quantified using a KT1000 device; however there is no standard way of measuring VV stability. The VV test relies on subjective force application and perception of laxity. Therefore we sought to develop and validate a device and method for quantifying knee balancing by analyzing VV stability. Materials and Methods. Our team developed a
The surgical correction of hammer digits offers a variety of surgical treatments ranging from arthroplasty to arthrodesis, with many options for fixation. In the present study, we compared 2 buried implants for arthrodesis of lesser digit deformities: a
Excellent outcomes following total hip arthroplasty require both optimal soft-tissue management and precise planning and placement of prosthetic components. The use of detailed and dynamic three-dimensional surgical plans combined with
Introduction. While component malposition remains a major short and long term problem associated with total hip arthroplasty, enhanced technologies such as navigation and robotics have not yet been widely adopted. Both expense and increased OR time can be obstacles to adoption. The current study assesses the effect of the use of a
Pre-operative knowledge. Knowledge-based total hip arthroplasty is becoming increasingly recognised for improved safety, efficiency, and accuracy. Pre-operative knowledge of native and planned femoral anteversion, the exact size of implants, neck length and offset, and head lengths can serve to safely accelerate surgery and reduce the need for intra-operative imaging. Pre-operative knowledge of the effect on change in leg length and offset effected by specific implant combinations can serve to minimise undesired changes. The use of a
Purpose. To evaluate whether continuous training and education of posture can help children to improve kyphosis. Method. A
Total knees today are performed with the use of standard trials that the surgeon utilises to define appropriate implant rotation, range of motion, and soft tissue balance. This “feel” based approach is very subjective, and lacks a quantifiable approach to interpret our intra-operative knee assessment. Sensor-based trials are embedded into the specific knee designed tibial trial, and wirelessly displays data related to the implant's position and ligament tension. The surgeon can now identify malrotation, soft tissue imbalance, and instability through a full ROM. The surgeon can see dynamic responses to ligament releases, alignment changes, and implant adjustments. As Insall taught us; a TKR is a soft tissue procedure, and a “balanced” knee will demonstrate improved outcomes and greater patient satisfaction.
Acetabular component malalignment remains the single greatest root cause for revision THA with malposition of at least ½ of all acetabular components placed using conventional methods. The use of local anatomical landmarks has repeatedly proven to be unreliable due to individual variation of these structures. As a result, the use of such landmarks without knowledge of their three-dimensional orientation may actually be a major cause of component malpositioning. Traditional navigation and robotics can potentially lead to improved component placement but these technologies have not gained widespread use due to the increase in time of use, complexity, and cost of these systems. The alternative of placing the cup in the supine position, even with the use of arthroscopy, has been proven to have an incidence of inaccuracy equal or greater than that in the lateral position. A
Major aspects on long-term outcome in Total Knee Arthroplasty are the correct alignment of the implant with the mechanical load axis, the rotational alignment of the components as well as good soft tissue balancing. To reduce the variability of implant alignment and at the same time minimise the invasiveness different computer assisted systems have been introduced. To achieve accuracy as high as those of a robotic system but with a pure mechanically adjustable cutting block, the Exactech GPS system has been developed. The new concept comprises a seamlessly planning and navigation screen with an integrated optical tracking system for fast and accurate acquisition and verification of anatomical landmarks within the sterile field as well as a tiny cutting guide for accurate transfer of the planned bone resections. Using a conventional screwdriver the cutting block could be accurately aligned with the planned resection by controlling the current position of the cutting block on the navigation screen. To save time, to maximise the ease of use and to minimize the surgeon's mental workload during adjustment, a
Symptomatic flexion deformity of proximal interpahalangeal joint (PIPJ) is one of the most common foot deformities and usually treated with arthrodesis. In general, percutaneous K-wires are used to stabilize the joint after excision of cartilage. K-wires projecting out of the toe need special care and can occasionally be dislodged accidentally. Furthermore issues such as cellulitis, pin tract infections, rarely osteomyelitis and need for removal make alternative fixation methods desirable.
In a study by Dickstein, one-third of total knee patients were not satisfied even though they were all thought to have had successful results by their orthopaedic surgeons. Noble and Conditt's study showed 14% of patients dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. This occurs despite improvements in instrumentation to obtain proper alignment and implants with excellent kinematics and wear characteristics. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance. Soft tissue imbalance can result in almost a third of early TKR revisions. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics, used in the knee with the medial retinaculum closed, can provide dynamic, intraoperative feedback regarding quantitative compartment pressures and component tracking. While visualising a graphical interface, the surgeon can assess the effect of sequential soft tissue releases performed to balance the knee. These
Most orthopaedic surgeons believe that total knee replacement has superb patient outcomes. Long-term results are excellent, with one study showing 15 year survivorship of 97%. However, our objective assessments of our patients' results are greater than patients' subjective assessments. In a study by Dickstein of total knee patients, one-third were not satisfied even though they were all thought to have had successful results by their orthopaedic surgeons. Noble and Conditt's study showed 14% of patients dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. We are puzzled by this patient dissatisfaction since radiographs usually show normal component alignment and positioning. Perhaps some of these patients have subtle soft tissue imbalance and kinematic maltracking. Excellent aligned bone cuts can be expected with modern instrumentation, especially if patient specific cutting instruments or computer navigation are used. However, inadequate instrumentation exists for soft tissue balancing. It is usually based on feel and visual estimation. Soft tissue balancing techniques are difficult to teach and perform by a less experienced surgeon.
Fifteen-year survivorship studies demonstrate that total knee replacement has excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al. reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al. reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores do so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intra- and post-operatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics, used in the knee with the medial retinaculum closed, can provide dynamic, intra-operative feedback regarding quantitative compartment pressures and component tracking. While visualising a graphical interface, the surgeon can assess the effect of sequential soft tissue releases performed to balance the knee. These
Introduction. Navigation of acetabular component orientation is still not commonly performed despite repeated studies that show that more than ½ of acetabular components placed during hip arthroplasty are significantly mal-positioned and that intra-operative radiographic assessment is unreliable. The current study uses postoperative CT to assess the accuracy of a
An anaesthetist recently remarked that orthopaedic surgeons are ‘twice as strong as an ox but half as
Introduction. Navigation of acetabular component orientation is still not commonly performed despite repeated studies that show that more than ½ of acetabular components placed during hip arthroplasty are significantly malpositioned. 1. The current study uses postoperative CT to assess the accuracy of a
Accurate implant placement is important to the success of joint replacement surgery. Three dimensional pre-operative planning optimizing the ability to define the anatomy and select the desired implant and its location. Linking this information into implant and patient specific instrumentation has been termed
Fifteen-year survivorship studies demonstrate that total knee replacements have excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al. reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al. reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores do so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intra-operatively and post-operatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intra-operative feedback regarding knee quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensor tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, the surgeon can decide if compartment loading differences are greater than 15 pounds whether to perform a soft tissue balance or minor bone recuts. If soft tissue balancing is chosen, pressure data can indicate where to perform the release and allow the surgeon to assess the pressure changes as titrated soft tissue releases are performed. A multi-center study using