Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 43 - 43
1 May 2021
Hutchinson R Ferguson D
Full Access

Introduction. Retention and removal of children's orthopaedic metalwork is a contentious issue that has implications for current resource allocation, health economics, complication risks and can impact on future treatments. Understanding how to guide families make informed choices requires an overview of all the relevant evidence to date, and knowledge of where the evidence is lacking. Our aim was to systematically review the literature and provide a meta-analysis where possible, recommending either retention or removal. Materials and Methods. A search of the literature yielded 2420 articles, of which 22 papers were selected for the study analysis. Inclusion criteria: Any paper (evidence level I-IV) assessing the risks or benefits of retaining or removing orthopaedic metalwork in children. Exclusion criteria: Spinal implants; implant number < 40; < 75% recorded follow up; papers including implants in their analysis that always require removal; patients aged >18 years. Results. In total, 4988 patients (6412 implants) were included across all 22 studies. There was a significant amount of heterogenicity between studies. Overall the short term risks of metalwork retention and removal are low, with a few exceptions. In forearm plating re-fracture rates following removal were lower than those seen in studies looking at retained metalwork, provided removal occurred later than 12 months from the initial operation. Forearm re-fracture rates after removal of flexible nails significantly increased if removal was performed before 6 months. Major complications following routine metalwork removal from the proximal femur are relatively rare, with re-fracture rates of 1–5%. The majority of these re-fractures are seen in neuromuscular patients or in patients where removal occurs earlier than 6 months. Routine metalwork removal following SUFE had a complication rate of 30–60%. Conclusions. We found that there are certain subgroups of children that benefit from retention of metalwork and some that benefit from removal. There are several subgroups that we have identified which do not yet have sufficient long term evidence to make a balanced recommendation. We advise that families are made aware of what is known and what is unknown in order to allow for shared decision making


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 15 - 15
24 Nov 2023
Trenkwalder K Erichsen S Weisemann F Augat P Militz M Hackl S
Full Access

Aim. Treatment algorithms for fracture-related nonunion depend on the presence or absence of bacterial infection. However, the manifestation of septic nonunion varies. Low-grade infections, unlike manifest infections, lack clinical signs of infection and present similarly to aseptic nonunion. The clinical importance of low-grade infection in nonunion is not entirely clear. Therefore, the aim of this study was to evaluate the clinical relevance of low-grade infection in the development and management of femoral or tibial nonunion. Method. A prospective, multicenter clinical study enrolled patients with nonunion and regular healed fractures. Preoperatively, complete blood count without differential, C-reactive protein (CRP), and procalcitonin were obtained, clinical signs of infection were recorded, and a suspected septic or aseptic diagnosis was made based on history and clinical examination. During surgical nonunion revision or routine implant removal, tissue samples were collected for microbiology and histopathology, and osteosynthesis material for sonication. Nonunion patients were followed for 12 months. Definitive diagnosis of “septic” or “aseptic” nonunion was made according to diagnostic criteria for fracture-related infection, considering the results of any further revision surgery during follow-up. Results. 34 patients with regular healed fractures were included. 62 nonunion patients were diagnosed as aseptic, 22 with manifest, and 23 with low-grade infection. The positive predictive value was 88% and the negative predictive value 72% for the suspected diagnosis. The nonunion groups had significantly higher CRP levels than the regular healer group. Differentiation between septic and aseptic nonunion based on blood values was not possible. Low-grade infection demonstrated less frequently histopathologic signs of infection than manifest infection (22% vs. 50%, p=0.048), with 15% of regular healers having histopathologic signs of infection. Cutibacterium acnes was less present in manifest compared to low-grade infection (p=0.042). Healing rates for septic nonunion involving C. acnes were significantly lower for manifest infection (20%) than for low-grade infection (100%, p=0.002). Patients with low-grade infection were treated with systemic antibiotics less frequently than patients with manifest infection (p=0.026), with no significant difference in healing rate (83% vs. 64%), which was slightly lower for low-grade infection than for aseptic nonunion (90%). Conclusions. Low-grade infections play a significant role in nonunion development and are difficult to diagnose preoperatively due to the lack of clinical signs of infection and unremarkable blood counts. However, our results imply that for low-grade infections, antibiotic therapy may not always be mandatory to heal the nonunion. This study was supported by the German Social Accident Insurance (FF-FR0276)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 40 - 40
1 Jun 2023
Al-Omar H Patel K Lahoti O
Full Access

Introduction. Angular deformities of the distal femur can be corrected by opening, closing and neutral wedge techniques. Opening wedge (OW) and closing wedge (CW) are popular and well described in the literature. CW and OW techniques lead to leg length difference whereas the advantage of neutral wedge (NW) technique has several unique advantages. NW technique maintains limb length, wedge taken from the closing side is utilised on the opening side and since the angular correction is only half of the measured wedge on either side, translation of distal fragment is minimum. Leg lengths are not altered with this technique hence a useful technique in large deformities. We found no reports of clinical outcomes using NW technique. We present a technique of performing external fixator assisted NW correction of large valgus and varus deformities of distal femur and dual plating and discuss the results. Materials & Methods. We have treated 20 (22 limbs – 2 patients requiring staged bilateral corrections) patients for distal femoral varus and valgus deformities with CWDFO between 2019 and 2022. Out of these 4 patients (5 limbs) requiring large corrections of distal femoral angular deformities were treated with Neutral Wedge (NW) technique. 3 patients (four limbs) had distal femoral valgus deformity and one distal femoral varus deformity. Indication for NW technique is an angular deformity (varus or valgus of distal femur) requiring > 12 mm opening/closing wedge correction. We approached the closing side first and marked out the half of the calculated wedge with K – wires in a uniplanar fashion. Then an external fixator with two Schanz screws is applied on the opposite side, inserting the distal screw parallel to the articular surface and the proximal screw 6–7 cm proximal to the first pin and at right angles to the femoral shaft mechanical axis. Then the measured wedge is removed and carefully saved. External fixator is now used to close the wedge and over correct, creating an appropriate opening wedge on the opposite side. A Tomofix (Depuoy Synthes) plate is applied on the closing side with two screws proximal to osteotomy and two distally (to be completed later). Next the osteotomy on the opposite side is exposed, the graft is inserted. mLDFA is measured under image intensifier to confirm satisfactory correction. Closing wedge side fixation is then completed followed by fixation of opposite side with a Tomofix or a locking plate. Results. 3 patients (4 limbs) had genu valgum due to constitutional causes and one was a case of distal femoral varus from a fracture. Preoperative mLDFA ranged from 70–75° and in one case of varus deformity it was 103°. We achieved satisfactory correction of mLDFA in (85–90°) in 4 limbs and one measured 91°. Femoral length was not altered. JLCA was not affected post correction. Patients were allowed to weight bear for transfers for the first six weeks and full weight bearing was allowed at six weeks with crutches until healing of osteotomy. All osteotomies healed at 16–18 weeks (average 16.8 weeks). Patients regained full range of movement. We routinely recommend removal of metal work to facilitate future knee replacement if one is needed. Follow up ranged from 4 months to 2 yrs. Irritation from metal work was noted in 2 patients and resolved after removing the plates at 9 months post-surgery. Conclusions. NWDFO is a good option for large corrections. We describe a technique that facilitates accurate correction of deformity in these complex cases. Osteotomy heals predictably with uniplanar osteotomy and dual plate fixation. Metal work might cause irritation like other osteotomy and plating techniques in this location