Advertisement for orthosearch.org.uk
Results 1 - 20 of 57
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 8 | Pages 1199 - 1204
1 Nov 2002
Race A Miller MA Ayers DC Cleary RJ Mann KA

We have compared the interface morphology at the stem-cement interface of standard Charnley stems with a satin finish (Ra = 0.75 μm) with identical stems which had been grit-blasted over their proximal third (Ra = 5.3 μm) to promote a proximal bond. The stems were cemented into cadaver femora using conventional contemporary cementing techniques. After transverse sectioning, we determined the percentage of the perimeter of the stem which had a gap at the interface. There were substantial gaps (mean 31.4 ± 17.1%) at the stem-cement interface in the grit-blasted region. This fraction was significantly (paired t-test, p = 0.0054) higher than that found around the contralateral satin-finished stems (mean 7.7 ± 11.7%). Although studies of isolated metal-cement interfaces have shown that the bond strength can increase with surface roughness it cannot be assumed that this effect will be observed under clinical conditions


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 21 - 21
4 Apr 2023
Meinshausen A Büssemaker H Viet Duc B Döring J Voropai V Müller A Martin A Berger T Schubert A Bertrand J
Full Access

Periprosthetic joint infections (PJI) are one of the most common reasons for orthopedic revision surgeries. In previous studies, it has been shown that silver modification of titanium (Ti-6Al-4V) surfaces by PMEDM (powder mixed electrical discharge machining) has an antibacterial effect on Staphylococcus aureus adhesion. Whether this method also influences the proliferation of bacteria has not been investigated so far. Furthermore, the effect is only limitedly investigated on the ossification processes. Therefore, the aim of this work is to investigate the antibacterial effect as well as the in vitro ossification process of PMEDM machined surfaces modified by integration of silver. In this study, we analyzed adhesion and proliferation of S. aureus in comparison to of surface roughness, silver content and layer thickness of the silver-integrated-PMEDM surfaces (N = 5). To test the in vitro ossification, human osteoblasts (SaOs-2) and osteoclasts (differentiated from murine-bone-marrow-macrophages) were cultured on the silver surfaces (N = 3). We showed that the attachment of S. aureus on the surfaces was significantly lower than on the comparative control surfaces of pure Ti-6Al-4V without incorporated silver, independently of the measured surface properties. Bacterial proliferation, however, was not affected by the silver content. No influence on the in vitro ossification was observed, whereas osteoclast formation was drastically reduced on the silver-modified surfaces. We showed that 1 to 3% of silver in the surface layer significantly reduced the adhesion of S. aureus, but not the proliferation of already attached bacteria. At the same time, no influence on the in vitro ossification was observed, while no osteoclasts were formed on the surface. Therefore, we state that PMEDM with simultaneous silver modification of the machined surfaces represents a promising technology for endoprostheses manufacturing to reduce infections while at the same time optimizing bone ingrowth


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 16 - 16
11 Apr 2023
Buchholz A Łapaj Ł Herbster M Gehring J Bertrand J Lohmann C Döring J
Full Access

In 2020 almost 90% of femoral heads for total hip implants in Germany were made of ceramic. Nevertheless, the cellular interactions and abrasion mechanisms in vivo have not been fully understood until now. Metal transfer from the head-neck taper connection, occurring as smear or large-area deposit, negatively influences the surface quality of the articulating bearing. In order to prevent metal transfer, damage patterns of 40 Biolox delta ceramic retrievals with CoC and CoPE bearings were analysed. A classification of damage type and severity for each component (n=40) was done according to an established scoring system. To investigate the physical properties, the surface quality was measured using confocal microscopy, quantitative analysis of phase composition were performed by Raman spectroscopy and qualitative analysis of metal traces was done by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). The periprosthetic tissue was analysed for abrasion particles with SEM and EDX. Both bearing types show different damage patterns. Dotted/ drizzled metal smears were identified in 82 % of CoC (n=16) and 96 % of CoPE (n=24) bearings. Most traces on the ceramic heads were identified in the proximal area while they were observed predominantly in the distal area for the ceramic inlays. The identified marks are similar to those of metallic bearings. Metallic smears lead to an increase of up to 30 % in the monoclinic crystalline phase of the ceramic. The roughness increases by up to six times to Ra=48 nm. Ceramic and metallic wear particles from the articulating surfaces or head neck taper junctions were found in the periprosthetic tissue. Damage patterns on CoC hip implants seem to be similar to those of metallic implants. More detailed analysis of CoC implants are needed to understand the described damage patterns and provide advice for prevention


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 78 - 78
4 Apr 2023
Voropai V Nieher M Kratsch A Kirchner W Giggel B Lohmann C Bertrand J Weißmantel S Döring J
Full Access

Total knee arthroplasty is one of the most common surgeries. About 92% of all implanted knee endorposthesis in 2020 were manufactured from uncoated CoCrMo articulating on ultra-high-molecular-weight polyethylene. All articluations generate wear particles and subsequent emission of metal ions due to the mechanical loading. These wear particles cause diverse negative reactions in the surrounding tissues and can lead to implant loosening. Coating technologies might offer the possibility to reduce this wear. Therefore, we investigated the applicability of tetrahedral amorphous carbon (ta-C) coating on CoCrMo alloy. Polished specimens made of CoCrMo wrought alloy according to ISO 5832-12 were coated with ta-C coatings with different layer structure using pulsed laser deposition (PLD). This process allows the deposition of ta-C coatings with low internal stress using an additional relaxation laser. Surface quality and mechanical properties of the coating were characterised using optical surface measurements (NanoFocus μsurf expert, NanoFocus AG) and a nanoindentation tester NHT. 3. (Anton Paar GmbH). Scratch tests were performed on Micro Scratch Tester MST. 3. (Anton Paar TriTec SA) to define the coating adhesion. Pin-on-plate tribological tests, with a polyethylene ball sliding on the ta-C-coated plate under a defined load according to ISO 14243-1 were performed using a linear tribometer (Anton Paar GmbH) to evaluate the tribological and wear properties. The ta-C coatings showed a mean roughness Ra of 5-20 nm and a hardness up to 60 GPa (n=3). The adhesion of the ta-C coatings (n=3) was comparable to the commercial coatings like TiN and TiNbN. The pin-on-plate tests showed an improvement of tribological properties in comparison with the polished uncoated CoCrMo specimens (n=3). The ta-C coatings applied by DLP technology show increased hardness compared to the base material and sufficient adhesion. Further research will be needed to investigate the optimal coating strategy for implant coating


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 74 - 74
17 Apr 2023
Theodoridis K Hall T Munford M Van Arkel R
Full Access

The success of cementless orthopaedic implants relies on bony ingrowth and active bone remodelling. Much research effort is invested to develop implants with controllable surface roughness and internal porous architectures that encourage these biological processes. Evaluation of these implants requires long-term and costly animal studies, which do not always yield the desired outcome requiring iteration. The aim of our study is to develop a cost-effective method to prescreen design parameters prior to animal trials to streamline implant development and reduce live animal testing burden. Ex vivo porcine cancellous bone cylinders (n=6, Ø20×12mm) were extracted from porcine knee joints with a computer-numerically-controlled milling machine under sterile conditions within 4 hours of animal sacrifice. The bone discs were implanted with Ø6×12mm additive manufactured porous titanium implants and were then cultured for 21days. Half underwent static culture in medium (DMEM, 10% FBS, 1% antibiotics) at 37°C and 5% CO. 2. The rest were cultured in novel high-throughput stacked configuration in a bioreactor that simulated physiological conditions after surgery: the fluid flow and cyclic compression force were set at 10ml/min and 10–150 N (1Hz,5000 cycles/day) respectively. Stains were administered at days 7 and 14. Samples were evaluated with widefield microscopy, scanning electron microscopy (SEM) and with histology. More bone remodelling was observed on the samples cultured within the bioreactor: widefield imaging showed more remodelling at the boundaries between the implant-bone interface, while SEM revealed immature bone tissue integration within the pores of the implant. Histological analysis confirmed these results, with many more trabecular struts with new osteoid formation on the samples cultured dynamically compared to static ones. Ex vivo bone can be used to analyse new implant technologies with lower cost and ethical impact than animal trial. Physiological conditions (load and fluid flow) promoted bone ingrowth and remodelling


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 85 - 85
4 Apr 2023
Wulfhorst M Büssemaker H Meinshausen A Herbster M Döring J Mai V Lohmann C Kautz A Laube T Wyrwa R Schnabelrauch M Bertrand J
Full Access

The implantation of endoprosthesis is a routine procedure in orthopaedics. Endoprosthesis are mainly manufactured from ceramics, polymers, metals or metal alloys. To ensure longevity of the implants they should be as biocompatible as possible and ideally have antibacterial properties, to avoid periprosthetic joint infections (PJI). Various antibacterial implant materials have been proposed, but have so far only been used sporadically in patients. PJI is one of the main risk factors for revision surgeries. The aim of the study was to identify novel implant coatings that both exhibit antibacterial properties whilst having optimal biocompatibility. Six different novel implant coatings and surface modifications (EBM TiAl6V4, strontium, TiCuN, TiNbN, gentamicin phosphate (GP), gentamicin phosphate+cationic polymer (GP+CP)) were compared to standard CoCrMo-alloy. The coatings were further characterized with regard to the surface roughness. E. coli and S. capitis were cultured on the modified surfaces to investigate the antibacterial properties. To quantify bacterial proliferation the optical density (OD) was measured and viability was determined using colony forming units (CFU). Murine bone marrow derived macrophages (BMMs) were cultured on the surfaces and differentiated into osteoblasts to quantify the mineralisation using the alizarin red assay. All novel coatings showed reduced bacterial proliferation and viability compared to standard CoCrMo-alloy. A significant reduction was observed for GP and GP+CP coated samples compared to CoCrMo (OD. GP,E.coli. = 0.18±0.4; OD. GP+CP,E.coli. = 0.13±0.3; p≤0.0002; N≥7-8). An increase in osteoblast-mediated mineralisation was observed on all surfaces tested compared to CoCrMo. Furthermore, GP and GP+CP coated samples showed a statistically significant increase (M. GP. = 0.21±0.1; M. GP+CP. = 0.25±0.2; p<0.0001; N≥3-6). The preliminary data indicates that the gentamicin containing surfaces have the most effective antibacterial property and the highest osseointegrative capacity. The use of antibiotic coatings on prostheses could reduce the risk of PJI while being applied on osseointegrative implant surfaces


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 6 - 6
1 Mar 2021
Styczynska-Soczka K Amin A Simpson H Hall A
Full Access

Abstract. Objectives. The development of promising therapeutics for cartilage repair/regeneration have been hampered by the inadequacy of existing animal models and lack of suitable translational ex-vivo human tissue models. There is an urgent unmet need for these to assess repair/regenerative (orthobiologic) treatments directly in human tissue. We describe methodology allowing the successful long-term ex-vivo culture of non-degenerate whole human femoral heads that may be used as a model for testing new orthobiologic therapies. Methods. Fifteen fresh, viable human femoral heads were obtained from 15 patients (with ethical permission/consent) undergoing hemiarthroplasty for hip fracture, and cultured aseptically (37°C) for up to 10wks. Culture conditions included static/stirred standard media (Dulbecco's modified Eagle's medium; DMEM) and supplementation with 10% human serum (HS). Chondrocyte viability, density, cell morphology, cell volume, glycosaminoglycan(GAG)/collagen content, surface roughness and cartilage thickness were quantified over time. Results. Chondrocyte viability remained highest (>95%;P<0.01;N(n)=3(12)) under static culture conditons in DMEM+10%HS and was maintained over 10wks. In static DMEM culture without 10%HS, viability remained high for ∼4wks, then decreased rapidly (N(n)=4(16)). Chondrocyte viability declined to <35% over 10wks under all other conditions (N(n)=4(16)). Culturing femoral heads in optimal media (DMEM+10%HS) for 10wks increased the number of chondrocytes producing cytoplasmic processes (P<0.002), but decreased cartilage thickness (P<0.002) and GAG content (P=0.028). Cartilage surface roughness, cellular density, chondrocyte volume and collagen content remained unchanged (P>0.05). Conclusions. The viability of human femoral head articular cartilage could be maintained over 10wks in ex-vivo culture. The model may allow testing of a wide range of orthobiologic therapies directly in human tissue, paving the way for subsequent targeted clinical studies of laboratory-proven strategies with the potential to repair/regenerate articular cartilage. Funder. Chief Scientist's Office, Scotland (Grant TCS/18/01). Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 20 - 20
17 Nov 2023
van Duren B France J Berber R Matar H James P Bloch B
Full Access

Abstract. Objective. Up to 20% of patients can remain dissatisfied following TKR. A proportion of TKRs will need early revision with aseptic loosening the most common. The ATTUNE TKR was introduced in 2011 as successor to its predicate design The PFC Sigma (DePuy Synthes, Warsaw, In). However, following reports of early failures of the tibial component there have been ongoing concerns of increased loosening rates with the ATTUNE TKR. In 2017 a redesigned tibial baseplate (S+) was introduced, which included cement pockets and an increased surface roughness to improve cement bonding. Given the concerns of early tibial loosening with the ATTUNE knee system, this study aimed to compare revision rates and those specific to aseptic loosening of the ATTUNE implant in comparison to an established predicate as well as other implant designs used in a high-volume arthroplasty centre. Methods. The Attune TKR was introduced to our unit in December 2011. Prior to this we routinely used a predicate design with an excellent long-term track record (PFC Sigma) which remains in use. In addition, other designs were available and used as per surgeon preference. Using a prospectively maintained database, we identified 10,202 patients who underwent primary cemented TKR at our institution between 01/04/2003–31/03/2022 with a minimum of 1 year follow-up (Mean 8.4years, range 1–20years): 1) 2406 with ATTUNE TKR (of which 557 were S+) 2) 4652 with PFC TKR 3) 3154 with other cemented designs. All implants were cemented using high viscosity cement. The primary outcome measures were all-cause revision, revision for aseptic loosening, and revision for tibial loosening. Kaplan-Meier survival analysis and Cox regression models were used to compare the primary outcomes between groups. Matched cohorts were selected from the ATTUNE subsets (original and S+) and PFC groups using the nearest neighbor method for radiographic analysis. Radiographs were assessed to compare the presence of radiolucent lines in the Attune S+, standard Attune, and PFC implants. Results. At a mean of 8.4 years follow-up, 308 implants underwent revision equating to 3.58 revisions per 1000 implant-years. The lowest risk of revision was noted in the ATTUNE cohort with 2.98 per 1000-implant-years where the PFC and All Other Implant groups were 3.15 and 4.4 respectively. Aseptic loosing was the most common cause for revision across all cemented implants with 76% (65/88) of involving loosening of the tibia. Survival analysis comparing the ATTUNE cohort to the PFC and All Other Cemented Implant cohorts showed no significant differences for: all-cause revision, aseptic loosening, or tibial loosening (p=0.15,0.77,0.47). Radiolucent lines were detected in 4.6%, 5.8%, and 5.0% of the ATTUNE S+, standard ATTUNE, and PFC groups respectively. These differences were not significant. Conclusion. This study represents the largest non-registry review of the original and S+ ATTUNE TKR in comparison to its predicate design as well as other cemented implants. There appears to be no significant increased revision rate for all-cause revision or aseptic loosening. Radiographic analysis also showed no significant difference in peri-implant radiolucency. It appears that concerns of early loosening may be unfounded. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives. The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. Methods. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs. Results. There was no evidence of cement attachment on any of the 11 Attune trays examined. There were significant differences between Ti and CoCr PFC Sigma implants and Attune designs (p < 0.05); however, there was no significant difference between CoCr PFC Sigma RP and Attune designs (p > 0.05). There were significant differences in the design features between the investigated designs (p < 0.05). Conclusion. The majority of the earliest PFC Sigma designs showed evidence of cement, while all of the retrieved Attune trays and the majority of the RP PFC trays in this study had no cement attached. This may be attributable to the design differences of these implants, in particular in relation to the cement pockets. Our results may help explain a controversial aspect related to cement attachment in a recently introduced TKA design. Cite this article: A. Cerquiglini, J. Henckel, H. Hothi, P. Allen, J. Lewis, A. Eskelinen, J. Skinner, M. T. Hirschmann, A. J. Hart. Analysis of the Attune tibial tray backside: A comparative retrieval study. Bone Joint Res 2019;8:136–145. DOI: 10.1302/2046-3758.83.BJJ-2018-0102.R2


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 22 - 22
1 Jan 2017
Pacha-Olivenza M García-Alonso M Tejero R Escudero M Gallardo Moreno A González-Martín M
Full Access

Adhered bacteria on titanium surfaces are able to decrease its corrosion potential and impedance values at the lowest frequencies. This result points to the detrimental influence of the biofilm on the passive film formed on the surfaces, independently on the surface finishes. Titanium is one of the most used metallic biomaterials for biological and implant applications. The spontaneous formation of a protective passive film around 2–5 nm thick, make titanium unique as a biomaterial for implants. Its composition has been described by a three-layer model: TiO2/Ti2O3/TiO and its stability is ultimately responsible for the success of osseointegrated titanium implants. The cases of breakdown of the protective passive film are associated with highly acidic environments induced by bacterial biofilms and/or inflammatory processes that lead to localized corrosion of titanium and, in extreme cases, implant failure. Bearing in mind that the surface design of a titanium implant is a key element involved in the healing mechanisms at the bone-implant interface, the surface modifications have sought to enhance the biomechanical anchorage of the implant and promote osseointegration at the cell-biomolecular level. However, little attention has been paid to the effects of these surface modifications in the microbiologically induced corrosion (MIC). The aim of this work is to evaluate the potential for MIC of titanium in the short term under viable bacterial cells of Streptococcus mutansas a representative microorganism of oral biofilm considered to be a highly cariogenic pathogen. Discs of 64 mm. 2. surface area of commercially pure titanium, grade 4, were supplied by Biotechnology Institute (BTI, Vitoria, Spain). Four surface treatments were studied: two acid etchings (low roughness, opN and high roughness, opV). In addition, acid etched plus anodic oxidation (opNT). For comparative purposes, two surface finishes have been included: high roughness – corresponding with sandblasting-large grit plus acid (SLA); and, as-machined titanium (mach). The oral strain used for assessing the biofilm formation on the corrosion behavior of Ti surfaces was Streptococus mutansATCC 25175, obtained from the Spanish Type Culture Collection (CECT). The study of MIC from Streptococcus mutanson surfaces of Ti was carried out in an electrochemical cell specifically designed and patented by some of the present authors [1]. A three set up configuration of the electrochemical cell was used in the experiments. The measurement of the corrosion potential and electrochemical impedance was performed at different periods of incubation of bacteria: 2, 7, 15, 21 and 28 days. Out Slight but continuous decrease in the corrosion potential and impedance values at the lowest frequencies indicate the deleterious influence of the biofilm on the passive film formed on the surfaces, independently on the surface finishes. This research suggests that the most appropriate surface modification for the dental implant portion at the bone level would be the acid etched of high roughness (opV) surface


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 40 - 40
1 Nov 2018
Lerf R Delfosse D
Full Access

A pin-on-disc tribometer test with a rotating disc and a sector-wise loaded pin was used to determine friction coefficients for different material pairings. The four pin materials porcine cartilage, subchondral bone of the porcine cartilage, UHMWPE, vitamin E enhanced, crosslinked UHMWPE (VEPE) in combination with the three-disc materials zirconia toughened alumina ceramic (ZTA), CoCr, carbon-fibre-reinforced carbon (CrC) were tested. Stepwise loading was employed with the forces 10 N, 5 N, 2 N and 1 N. Test duration was 1 h. Diluted calf serum according ISO 14242-1 was used to determine the friction coefficients. The surface topography of all pins was examined using optical profilometry before and after the rotation tribometer tests. - No wear related modifications of the surface roughness parameters could be found. The coefficients of friction (COF) were lowest for the cartilage pins against all three-disc materials, with steady-state values between 0.01 and 0.02 for the highest applied load (10 N). Friction of subchondral bone yielded COF in the range 0.2 … 0.6, depending on the counterpart material. The two polyethylene materials behaved similar in this friction test with COF of about 0.1. The Ra roughness values of the different pins reflect the COF results: Ra of subchondral bone was one order of magnitude higher than Ra of the cartilage. This is in-line with the COF-values of bone being one order of magnitude higher than those of cartilage. These results will be discussed in view of the use of the disc materials as orthopaedic hemi-prostheses


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 80 - 80
1 Nov 2021
Graziani G Sartori M Fini M Sassoni E Boi M Farè S Baldini N
Full Access

Introduction and Objective. The choice of appropriate characteristics is crucial to favor a firm bonding between orthopedic implants and the host bone and to permit bone regeneration. In particular, the morphology and composition of the biointerface plays a crucial role in orchestrating precise cellular responses. Here, to modulate the biointerface, we propose new biomimetic coatings, having multi-scale nano- to micro- morphological cues and a composition mimicking the mineral phase of bone. Materials and Methods. Films on various substrates are obtained by Ionized Jet Deposition (IJD), by ablation of biogenic apatite and annealing at 400°C for 1 hour. Films are proposed for functionalization of metallic implants, but application to heat sensitive porous (3D printed) substrates is also shown, as it permits to further boost biomimicry (by addition of collagen/gelatin), thus reproducing the architecture of cancellous bone. In IJD, coatings thickness can be selected by tuning deposition duration. Here, a 450 nm thickness is selected based on preliminary results. Micro-rough titanium alloy (Ti6Al4V) disks (roughness 5 μm) are used as a substrate for the deposition and as a control. The coatings are characterized in terms of composition (GI-XRD, EDS, FT-IR microscopy), morphology (FEG-SEM, AFM, data processing by ImageJ), mechanical properties (micro-scratch test) and dissolution profile in medium (pH 7.4, FEG-SEM). Then, their behavior is characterized in vitro (human bone marrow-derived mesenchymal stromal cells - hMSCs), by studying cells early adhesion (focal adhesion by vinculin staining), viability (Alamar Blue), morphology (SEM) and differentiation (expression of RUNX2, ALPL, SPARC and COL1A1, BMP2, BGLAP, osteocalcin, alkaline phosphatase, collagen type I) at 3, 7 and 14 days. Results. Films exhibit a biomimetic composition, as they are constituted by a nanocrystalline multi-doped carbonated hydroxyapatite. EDS indicates the presence of trace ions sodium (0,11 ± 0,02 wt%) and magnesium (0,47 ± 0,05 wt%), uniformly distributed in the coating in a percentage close to native bone. These ion-substitutions are crucial, as each ion modifies apatite solubility and ion-release in the peri-implant environment and has important biological role. Films have a high adhesion to the substrates and a suitable dissolution profile. The morphology is highly rough, as films are composed by nanosized grains (minimum diameter 40 nm) aggregated in multi-scale clusters (diameter range: 100 nm-2 μm). Morphology of the aggregates can be tuned by selecting deposition duration and also depends on the morphology, roughness and composition of the substrate. Because of the nanoscale thickness of the films, they do not alter the microscale features of the implants. For fibrous substrates, films grow onto the fibers surface, with no pore occlusion or damage to substrate composition. Coatings do not alter the metabolic activity of MSCs but influence their early adhesion, morphology and differentiation. More in detail, MSCs on coated disks show a branched shape, while those on the controls show a more spindle and elongated morphology. Coatings increase hMSCs early adhesion, as a higher density and a greater area of focal adhesions are observed at 24 hours. Finally, they can trigger a signaling pathway that promotes the osteogenic differentiation of hMSCs, as confirmed by quantification of osteocalcin, alkaline phosphatase and collagen, even in the absence of osteogenesis-inducing factors. Conclusions. The topographical and chemical cues of the biomimetic nanostructured coating are perceived by hMCSs, showing that combining morphological and biomimetic cues is a promising route for the development of cells-instructive biomaterials for orthopedics. In vivo tests on rabbit models are in progress


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 33 - 33
1 Mar 2021
Graziani G Farè S De Carolis M Negrini N Bianchi M Sassoni E Maltarello M Boi M Berni M Baldini N
Full Access

Calcium phosphates-based coatings have been widely studied to favour a firm bonding between orthopaedic implants and the host bone. To this aim, thin films (thickness below 1 μm) having high adhesion to the substrate and a nanostructured surface texture are desired, capable of boosting platelet, proteins and cells adhesion. In addition, a tunable composition is required to resemble as closely as possible the composition of mineralized tissues and/or to intentionally substitute ions having possible therapeutic functions. The authors demonstrated nanostructured films having high surface roughness and a composition perfectly resembling the deposition target one can be achieved by Ionized Jet Deposition (IJD). Highly adhesive nanostructured coatings were obtained by depositing bone-apatite like thin films by ablation of deproteinized bovine bone, capable of promoting host cells attachment, proliferation and differentiation. Here, biomimetic films are deposited by IJD, using biogenic and synthetic apatite targets. Since IJD deposition can be carried out without heating the substrate, application on heat sensitive polymeric substrate, i.e. 3D printed porous scaffolds, is investigated. Biogenic apatite coatings are obtained by deposition of deproteinized bone (bovine, ovine, equine, porcine) and compared to ones of stoichiometry hydroxyapatite (HAp). Coatings composition (FT-IR-ATR, FT-IR microscopy, XRD, EDS) and morphology (SEM, AFM) are tested for deposition onto metallic and 3D-printed polymeric substrates (polyurethane (PU)). Different post-treatment annealing procedures for metallic substrates are compared (350–425°C), to optimize crystallinity. Then, uniformity of substrate coverage and possible damage caused to the polymeric substrate are studied by SEM, DSC and FT-IR microscopy. Biogenic coatings are composed by carbonated HAp (XRD, FT-IR). Trace ions Na. +. and Mg. 2+. are transferred from deposition target to coating. All coatings are nanostructured, composed by nano-sized globular aggregates, of which morphology and dimensions depend on the target characteristics. As-deposited coatings are amorphous, but crystallinity can be tuned by post-treatment annealing. A bone-like crystallinity can be achieved for heating at ≥400°C, also depending on duration. When deposited on 3D-printed PU scaffolds, coatings, owing to sub-micrometric thickness, coat them entirely, without altering their fibre shape and porosity. Obtained biomimetic bone apatite coatings can be deposited onto a variety of metallic and polymeric biomedical devices, thus finding several perspective applications in biomedical field


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 33 - 33
1 Dec 2020
Diez-Escudero A Andersson BM Järhult JD Hailer NP
Full Access

Uncemented implants combining antimicrobial properties with osteoconductivity would be highly desirable in revision surgery due to periprosthetic joint infection (PJI). Silver coatings convey antibacterial properties, however, at the cost of toxicity towards osteoblasts. On the other hand, topological modifications such as increased surface roughness or porosity support osseointregation but simultaneously lead to enhanced bacterial colonization. In this study, we investigated the antibacterial and osteoconductive properties of silver-coated porous titanium (Ti) alloys manufactured by electron beam melting, rendering a macrostructure that mimics trabecular bone. Trabecular implants with silver coating (TR-Ag) or without coating (TR) were compared to grit-blasted Ti6Al4V (GB) and glass cover slips as internal controls. Physicochemical characterization was performed by X-ray diffraction (XRD) and energy dispersive X-rays (EDX) together with morphological characterization through electron scanning microscopy (SEM). Bacterial adherence after incubation of samples with Staphylococcus (S.) aureus and S. epidermidis strains harvested from PJI patients was quantitatively assessed by viable count after detachment of adherent bacteria by collagenase/dispase treatment. Primary human osteoblasts (hOB) were used to investigate the osteoconductive potential by lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) activity. Cell morphology was investigated by fluorescence microscopy after staining with carboxifluorescein diacetate succinimidyl ester (CFDA-SE) and 4′,6-diamidino-2-phenylindole (DAPI). The trabecular implants depicted a porosity of 70% with pore sizes of 600µm. The amount of silver analyzed by EDX accounted for 35%wt in TR-Ag but nil in TR. Silver-coated TR-Ag implants had 24% lower S. aureus viable counts compared to non-coated TR analogues, and 9% lower compared to GB controls. Despite trabecular implants, both with and without silver, had higher viable counts than GB, the viable count of S. epidermidis was 42% lower on TR-Ag compared to TR. The percentage of viable hOB, measured by LDH and normalized to controls and area at 1 day, was lower on both TR-Ag (18%) and on TR (13%) when compared with GB (89%). However, after 1 week, cell proliferation increased more markedly on trabecular implants, with a 5-fold increase on TR-Ag, a 3.4-fold increase on TR, and a 1.7-fold increase on GB. Furthermore, after 2 weeks of hOB culture, proliferation increased 20-fold on TR-Ag, 29-fold on TR, and 3.9-fold for GB, compared to 1 day. The osteoconductive potential measured by ALP illustrated slightly higher values for TR-Ag compared to TR at 1 day and 2 weeks, however below those of GB samples. Cell morphology assessed by microscopy showed abundant growth of osteoblast-like cells confined to the pores of TR-Ag and TR. Overall, our findings indicate that the silver coating of trabecular titanium exerts limited cytotoxic effects on osteoblasts and confers antimicrobial effects on two PJI-relevant bacterial strains. We conclude that improving material design by mimicking the porosity and architecture of cancellous bone can enhance osteoconductivity while the deposition of silver confers potent antimicrobial properties


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 331 - 336
1 Mar 1997
Kusaba A Kuroki Y

We retrieved 159 femoral heads at revision surgery to determine changes in surface configuration. Macroscopic wear of the head was observed in three bipolar hip prostheses as a result of three-body wear. There was a considerable change in surface roughness in the internal articulation of bipolar hip prostheses. Roughness in alumina heads was almost the same as that in new cobalt-chromium heads. The annual linear wear rate of polyethylene cups with alumina heads was less than that of cups with cobalt-chromium alloy heads. Polyethylene wear was increased in the prostheses which had increased roughness of the head


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 77 - 77
1 Aug 2012
Lord J Langton D Nargol A Meek R Joyce T
Full Access

Metal-on-metal hip resurfacing prostheses are a relatively recent intervention for relieving the symptoms of common musculoskeletal diseases such as osteoarthritis. While some short term clinical studies have offered positive results, in a minority of cases there is a recognised issue of femoral fracture, which commonly occurs in the first few months following the operation. This problem has been explained by a surgeon's learning curve and notching of the femur but, to date, studies of explanted early fracture components have been limited. Tribological analysis was carried out on fourteen retrieved femoral components of which twelve were revised after femoral fracture and two for avascular necrosis (AVN). Eight samples were Durom (Zimmer, Indiana, USA) devices and six were Articular Surface Replacements (ASR, DePuy, Leeds, United Kingdom). One AVN retrieval was a Durom, the other an ASR. The mean time to fracture was 3.4 months. The AVNs were retrieved after 16 months (Durom) and 38 months (ASR). Volumetric wear rates were determined using a Mitutoyo Legex 322 co-ordinate measuring machine (scanning accuracy within 1 micron) and a bespoke computer program. The method was validated against gravimetric calculations for volumetric wear using a sample femoral head that was artificially worn in vitro. At 5mm3, 10mm3, and 15mm3 of material removal, the method was accurate to within 0.5mm3. Surface roughness data was collected using a Zygo NewView500 interferometer (resolution 1nm). Mean wear rates of 17.74mm3/year were measured from the fracture components. Wear rates for the AVN retrievals were 0.43mm3/year and 3.45mm3/year. Mean roughness values of the fracture retrievals (PV = 0.754nm, RMS = 0.027nm) were similar to the AVNs (PV = 0.621nm, RMS = 0.030nm), though the AVNs had been in vivo for significantly longer. Theoretical lubrication calculations were carried out which found that in both AVN retrievals and in seven of the twelve cases of femoral fracture the roughening was sufficient to change the lubrication regime from fluid film to mixed. Three of these surfaces were bordering on the boundary lubrication regime. The results show that even before the femoral fracture, wear rates and roughness values were high and the implants were performing poorly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 42 - 42
1 Oct 2016
Pasko K Hall R Neville A Tipper J
Full Access

Surgical interventions for the treatment of chronic neck pain, which affects 330 million people globally [1], include fusion and cervical total disc replacement (CTDR). Most of the currently clinically available CTDRs designs include a metal-on-polymer (MoP) bearing. Numerous studies suggest that MoP CTDRs are associated with issues similar to those affecting other MoP joint replacement devices, including excessive wear and wear particle-related inflammation and osteolysis [2,3]. A device with a metal-on-metal (MoM) bearing has been investigated in the current study. Six MoM CTDRs made from high carbon cobalt-chromium (CoCr) were tested in a six-axis spine simulator, under standard ISO testing protocol (ISO-18192-1) for a duration of 4 million cycles (MC). Foetal bovine calf serum (25%v/v), used as a lubricant, was changed every 3.3×10. 5. cycles and saved for particle analysis. Components were taken down for measurements after each 10. 6. cycles; surface roughness, damage modes and gravimetric wear were assessed. The mean wear rate of the MoM CTDRs was 0.24mm. 3. /MC (SD=0.03), with the total volume of 0.98mm. 3. (SD=0.01) lost over the test duration. Throughout the test, the volumetric wear was linear; no significant bedding-in period was observed. The mean pre-test surface roughness decreased from 0.019μm (SD=0.005) to 0.012μm (SD=0.002) after 4MC of testing. Prior to testing, fine polishing marks on the bearing surfaces were observed using light microscopy. Following 4MC of testing, these polishing marks had been removed. Consistently across all components, surface discolouration and multidirectional, criss-crossing, circular wear tracks, caused by abrasive wear, were observed. The wear results showed low wear rates exhibited by MoM CTDRs (0.24mm. 3. /MC), when compared CTDR designs incorporating metal-on-polymer bearings (0.56mm. 3. /MC) [4] as well as MoM lumbar CTDRs [5,6] (0.76mm3/MC – 6.2mm. 3. /MC). These findings suggest that MoM CTDRs are more wear resistant than MoP CTDRs, however the particle characterisation and biological consequences of wear remain to be determined


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 52 - 52
1 Mar 2013
Bone M Giddins G Joyce T
Full Access

Introduction. Ten explanted pyrolytic carbon components of a number of finger prostheses were obtained at revision surgery for wear analysis. Implants were removed for either dislocation or failure of fixation. Hypothesis Failure of the components was due to wear from the articulating surfaces, as occurs in many hip and knee prostheses. Methods. The articulating surfaces were examined using a ZYGO NewView 5000 non-contact profilometer with a resolution of 1nm, to determine the roughness average (RA) of the surface. A total of 86 RA measurements were taken. Detailed images of the surface displayed as a 3D map of were acquired. The RA values for each component were averaged and compared against the British standard for orthopaedic implants, which states that the articulating surfaces of devices made of metal or ceramic should have RA values lower than 0.050 µm. Results. The low surface roughness demonstrated that the vast majority of the articulating surfaces of the components were relatively unworn with RA values lower than British standard, even following use in vivo. ZYGO images showed light unidirectional scratching on four of the explanted components, but despite the scratching, the RA values of these components were still low (<0.050 µm) showing that this was superficial damage. No other significant damage was observed. Discussion. Due to the lack of damage on the articulating surfaces and the low RA values recorded the failure of these prostheses is not considered to be wear related. Significance This is the first report of ex vivo analysis of pyrolytic carbon finger prostheses


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1561 - 1567
1 Nov 2005
Janssen D Aquarius R Stolk J Verdonschot N

The Capital Hip implant was a Charnley-based system which included a flanged and a roundback stem, both of which were available in stainless steel and titanium. The system was withdrawn from the market because of its inferior performance. However, all four of the designs did not produce poor rates of survival. Using a simulated-based, finite-element analysis, we have analysed the Capital Hip system. Our aim was to investigate whether our simulation was able to detect differences which could account for the varying survival between the Capital Hip designs, thereby further validating the simulation. We created finite-element models of reconstructions with the flanged and roundback Capital Hips. A loading history was applied representing normal walking and stair-climbing, while we monitored the formation of fatigue cracks in the cement. Corresponding to the clinical findings, our simulation was able to detect the negative effects of the titanium material and the flanged design in the Capital Hip system. Although improvements could be made by including the effect of the roughness of the surface of the stem, our study increased the value of the model as a predictive tool for determining failure of an implant


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 33 - 33
1 Jan 2019
Hopwood J Chapman G Redmond A Richards L Brockett C
Full Access

Total ankle replacement (TAR) is a substitute to ankle fusion, replacing the degenerated joint with a mechanical motion-conserving alternative. Compared with hip and knee replacements, TARs remain to be implanted in much smaller numbers, due to the surgical complexity and low mid-to-long term survival rates. TAR manufacturers have recently explored the use of varying implant sizes to improve TAR performance. This would allow surgeons a wider scope for implanting devices for varying patient demographics. Minimal pre-clinical testing has been demonstrated to date, while existing wear simulation standards lack definition. Clinical failure of TARs and limited research into wear testing defined a need for further investigation into the wear performance of TARs to understand the effects of the kinematics on varying implant sizes. Six medium and six extra small BOX® (MatOrtho) TARs will be tested in a modified knee simulator for 5 million cycles (Mc). The combinations of simulator inputs that mimic natural gait conditions were extracted from ankle kinematic profiles defined in previous literature. The peak axial load will be 3.15 kN, which is equivalent to 4.5 times body weight of a 70kg individual. The flexion profile ranges from 15° plantarflexion to 15° dorsiflexion. Rotation about the tibial component will range from −2.3° of internal rotation to 8° external rotation, while the anterior/posterior displacement will be 7mm anterior to −2mm posterior throughout the gait cycle. The components will be rotated through the simulation stations every Mc to account for inter-station variability. Gravimetric measurements of polyethylene wear will be taken at every Mc stage. A contact profilometer will also be used to measure average surface roughness of each articulating surface pre-and-post simulation. The development of such methods will be crucial in the ongoing improvement of TARs, and in enhancing clinical functionality, through understanding the envelope of TAR performance