Advertisement for orthosearch.org.uk
Results 1 - 20 of 68
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_9 | Pages 18 - 18
16 May 2024
Najefi A Ghani Y Goldberg A
Full Access

Background. The importance of total ankle replacement (TAR) implant orientation in the axial plane is poorly understood with major variation in surgical technique of implants on the market. Our aims were to better understand the axial rotational profile of patients undergoing TAR. Methods. In 157 standardised CT Scans of end-stage ankle arthritis patients planning to undergo primary TAR surgery, we measured the relationship between the knee posterior condylar axis, the tibial tuberosity, the transmalleolar axis(TMA) and the tibiotalar angle. The foot position was measured in relation to the TMA with the foot plantigrade. The variation between medial gutter line and the line bisecting both gutters was assessed. Results. The mean external tibial torsion was 34.5±10.3°(11.8–62°). When plantigrade the mean foot position relative to the TMA was 21±10.6°(0.7–38.4°) internally rotated. As external tibial torsion increased, the foot position became more internally rotated relative to the TMA(pearson correlation 0.6;p< 0.0001). As the tibiotalar angle became more valgus, the foot became more externally rotated relative to the TMA(pearson correlation −0.4;p< 0.01). The mean difference between the medial gutter line and a line bisecting both gutters was 4.9±2.8°(1.7°-9.4°). More than 51% of patients had a difference greater than 5°. The mean angle between the medial gutter line and a line perpendicular to the TMA was 7.5°±2.6°(2.8°-13.7°). Conclusion. There is a large variation in rotational profile of patients undergoing TAR, particularly between the medial gutter line and the transmalleolar axis. Surgeon designers and implant manufacturers need to develop consistent methods to guide surgeons towards judging appropriate axial rotation of their implanton an individual basis. We recommend careful clinical assessment and CT scanspre-operatively to enable the correct rotation to be determined


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_11 | Pages 18 - 18
4 Jun 2024
Najefi AA Alsafi M Katmeh R Zaveri AK Cullen N Patel S Malhotra K Welck M
Full Access

Introduction. Recurrence after surgical correction of hallux valgus may be related to coronal rotation of the first metatarsal. The scarf osteotomy is a commonly used procedure for correcting hallux valgus but has limited ability to correct rotation. Using weightbearing computed tomography (WBCT), we aimed to measure the coronal rotation of the first metatarsal before and after a scarf osteotomy, and correlate these to clinical outcome scores. Methods. We retrospectively analyzed 16 feet (15 patients) who had a WBCT before and after scarf osteotomy for hallux valgus correction. On both scans, hallux valgus angle (HVA), intermetatarsal angle, and anteroposterior/lateral talus-first metatarsal angle were measured using digitally reconstructed radiographs. Metatarsal pronation (MPA), alpha angle, sesamoid rotation angle and sesamoid position was measured on standardized coronal CT slices. Preoperative and postoperative(12 months) clinical outcome scores(MOxFQ and VAS) were captured. Results. Mean HVA was 28.6±10.1 degrees preoperatively and 12.1±7.7 degrees postoperatively. Mean IMA was 13.7±3.8 degrees preoperatively and 7.5±3.0 degrees postoperatively. Before and after surgery, there were no significant differences in MPA (11.4±7.7 and 11.4±9.9 degrees, respectively; p = 0.75) or alpha angle (10.9±8.0 and 10.7±13.1 degrees, respectively; p = 0.83). There were significant improvements in SRA (26.4±10.2 and 15.7±10.2 degrees, respectively; p = 0.03) and sesamoid position (1.4±1.0 and 0.6±0.6, respectively; p = 0.04) after a scarf osteotomy. There were significant improvements in all outcome scores after surgery. Poorer outcome scores correlated with greater postoperative MPA and alpha angles (r= 0.76 (p = 0.02) and 0.67 (p = 0.03), respectively). Conclusion. A scarf osteotomy does not correct first metatarsal coronal rotation, and worse outcomes are linked to greater metatarsal rotation. Rotation of the metatarsal needs to be measured and considered when planning hallux valgus surgery. Further work is needed to compare postoperative outcomes with rotational osteotomies and modified Lapidus procedures when addressing rotation


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1055 - 1059
1 Aug 2007
Schock HJ Pinzur M Manion L Stover M

Supination-external rotation (SER) fractures of the ankle may present with a medial ligamentous injury that is not apparent on the initial radiographs. A cadaver gravity-stress view has been described, but the manual-stress view is considered to be the examination of choice for the diagnosis of medial injuries. We prospectively compared the efficacy of these two examinations. We undertook both examinations in 29 patients with SER fractures. Of these, 16 (55%) were stress-positive, i.e. and had widening of the medial clear space of > 4 mm with a mean medial clear space of 6.09 mm (4.4 to 8.1) on gravity-stress and 5.81 mm (4.0 to 8.2) on manual-stress examination, and 13 patients (45%) were stress-negative with a mean medial clear space of 3.91 mm (3.3 to 5.1) and 3.61 mm (2.6 to 4.5) on examination of gravity- and manual-stress respectively. The mean absolute visual analgoue scale score for discomfort in the examination of gravity stress was 3.45 (1 to 6) and in the manual-stress procedure 6.14 (3 to 10). We have shown that examination of gravity-stress is as reliable and perceived as more comfortable than that of manual stress. We recommend using it as the initial diagnostic screening examination for the detection of occult medial ligamentous injuries in SER fractures of the ankle


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_7 | Pages 12 - 12
8 May 2024
Miller D Stephen J Calder J el Daou H
Full Access

Background. Lateral ankle instability is a common problem, but the precise role of the lateral ankle structures has not been accurately investigated. This study aimed to accurately investigate lateral ankle complex stability for the first time using a novel robotic testing platform. Method. A six degrees of freedom robot manipulator and a universal force/torque sensor were used to test 10 foot and ankle specimens. The system automatically defined the path of unloaded plantar/dorsi flexion. At four flexion angles: 20° dorsiflexion, neutral flexion, 20° and 40° of plantarflexion; anterior-posterior (90N), internal-external (5Nm) and inversion-eversion (8Nm) laxity were tested. The motion of the intact ankle was recorded first and then replayed following transection of the lateral retinaculum, Anterior Talofibular Ligament (ATFL) and Calcaneofibular Ligament (CFL). The decrease in force/torque reflected the contribution of the structure to restraining laxity. Data were analysed using repeated measures of variance and paired t-tests. Results. The ATFL was the primary restraint to anterior drawer (P< 0.01) and the CFL the primary restraint to inversion throughout range (P< 0.04), but with increased plantarflexion the ATFL's contribution increased. The ATFL had a significant role in resisting tibial external rotation, particularly at higher levels of plantarflexion, contributing 63% at 40° (P< 0.01). The CFL provided the greatest resistance to external tibial rotation, 22% at 40° plantarflexion (P< 0.01). The extensor retinaculum and skin did not offer significant restraint in any direction tested. Conclusion. This study shows accurately for the first time the significant role the ATFL and CFL have in rotational ankle stability. This significant loss in rotational stability may have implications in the aetiology of osteophyte formation and early degenerative changes in patients with chronic ankle instability. This is the first time the role of the lateral ankle complex has been quantified using a robotic testing platform


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_7 | Pages 23 - 23
8 May 2024
Jayatilaka M Fisher A Fisher L Molloy A Mason L
Full Access

Introduction. The treatment of posterior malleolar fractures is developing. Mason and Molloy (Foot Ankle Int. 2017 Nov;38(11):1229-1235) identified only 49% of posterior malleolar rotational pilon type fractures had syndesmotic instabilities. This was against general thinking that fixation of such a fragment would stabilize the syndesmosis. Methods. We examined 10 cadaveric lower limbs that had been preserved for dissection at the Human Anatomy and Resource Centre at Liverpool University in a solution of formaldehyde. The lower limbs were carefully dissected to identify the ligamentous structures on the posterior aspect of the ankle. To compare the size to the rotational pilon posterior malleolar fracture (Mason and Molloy 2A and B) we gathered information from our posterior malleolar fracture database. 3D CT imaging was analysed using our department PACS system. Results. The PITFL insertion on the posterior aspect of the tibia is very large. The average size of insertion was 54.9×47.1mm across the posterior aspect of the tibia. Medially the PITFL blends into the sheath of tibialis posterior and laterally into the peroneal tendon sheath. 78 posterior lateral and 35 posterior medial fragments were measured. On average, the lateral to medial size of the posteromalleolar fragment was 24.5mm in the posterolateral fragment, and 43mm if there is a posteromedial fragment present also. The average distal to proximal size of the posterolateral fragment was 24.5mm and 18.5mm for the posteromedial fragment. Conclusion. The PITFL insertion on the tibia is broad. In comparison to the average size of the posterior malleolar fragments, the PITFL insertion is significantly bigger. Therefore, for a posterior malleolar fracture to cause posterior syndesmotic instability, a ligamentous injury will also have to occur. This explains the finding by Mason and Molloy that only 49% of type 2 injuries had a syndesmotic injury on testing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_13 | Pages 8 - 8
17 Jun 2024
Aamir J Caldwell R Long S Sreenivasan S Mayrotas J Panera A Jeevaresan S Mason L
Full Access

Background. Many approaches to management of medial malleolar fractures are described in the literature however, their morphology is under investigated. The aim of this study was to analyse the morphology of medial malleolar fractures to identify any association with medial malleolar fracture non-union or malunion. Methods. Patients who had undergone surgical fixation of their MMF were identified from 2012 to 2022, using electronic patient records in a single centre. Analysis of their preoperative, intraoperative, and postoperative radiographs was performed to determine their morphology and prevalence of non-union and malunion. Lauge-Hansen classification was used to characterise ankle fracture morphology and Herscovici classification to characterise MMF morphology. Results. A total of 650 patients were identified across a 10-year period which could be included in the study. The overall non-union rate for our cohort was 18.77% (122/650). The overall malunion rate was 6.92% (45/650). There was no significant difference in union rates across the Herscovici classification groups. Herscovici type A fractures were significantly more frequently malreduced at time of surgery as compared to other fracture types (p=.003). Medial wall blowout combined with Hercovici type B fractures showed a significant increase in malunion rate. There is a higher rate of bone union in patients who have been anatomically reduced. Conclusion. The morphology of medial malleolar fractures does have an impact of the radiological outcome following surgical management. Medial wall blowout fractures were most prevalent in adduction-type injuries; however, it should not be ruled out in rotational injuries with medial wall blowouts combined with and Herscovici type B fractures showing a significant increase in malunions. Herscovici type A fractures had significantly higher malreductions however the clinical implications of mal reducing small avulsions is unknown


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_9 | Pages 23 - 23
16 May 2024
McCormack D Kirmani S Aziz S Faroug R Solan M Mangwani J
Full Access

Background. Supination-external rotation (SER) injuries make up 80% of all ankle fractures. SER stage 2 injuries (AITFL and Weber B) are considered stable. SER stage 3 injury includes disruption of the posterior malleolus (or PITFL). In SER stage 4 there is either medial malleolus fracture or deltoid injury too. SER 4 injuries have been considered unstable, requiring surgery. The deltoid ligament is a key component of ankle stability, but clinical tests to assess deltoid injury have low specificity. This study specifically investigates the role of the components of the deep deltoid ligament in SER ankle fractures. Aim. To investigate the effect of deep deltoid ligament injury on SER ankle fracture stability. Methods. Four matched pairs (8 specimens) were tested using a standardised protocol. Specimens were sequentially tested for stability when axially loaded with a custom rig with up to 750N. Specimens were tested with: ankle intact; lateral injury (AITFL and Weber B); additional posterior injury (PITFL); additional anterior deep deltoid; additional posterior deep deltoid; lateral side ORIF. Clinical photographs and radiographs were recorded. In addition, dynamic stress radiographs were performed after sectioning the deep deltoid and then after fracture fixation to assess tilt of the talus in eversion. Results. All specimens with an intact posterior deep deltoid ligament were stable when loaded and showed no talar tilt on dynamic assessment. Once the posterior deep deltoid ligament was sectioned there was instability in all specimens. Surgical stabilisation of the lateral side prevented talar shift but not talar tilt. Conclusion. If the posterior deep deltoid ligament is intact SER fractures may be managed without surgery in a plantigrade cast. Without immobilisation the talus may tilt, risking deltoid incompetence


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_13 | Pages 10 - 10
17 Jun 2024
Malhotra K Patel S Cullen N Welck M
Full Access

Background. The cavovarus foot is a complex 3-dimensional deformity. Although a multitude of techniques are described for its surgical management, few of these are evidence based or guided by classification systems. Surgical management involves realignment of the hindfoot and soft tissue balancing, followed by forefoot balancing. Our aim was to classify the pattern of residual forefoot deformities once the hindfoot is corrected, to guide forefoot correction. Methods. We included 20 cavovarus feet from adult patients with Charcot-Marie-Tooth who underwent weightbearing CT (mean age 43.4 years, 14 males). Patients included had flexible deformities, with no previous surgery. Previous work established majority of rotational deformity in cavovarus feet occurs at the talonavicular joint, which is often reduced during surgery. Using specialised software (Bonelogic 2.1, Disior) a 3-dimensional, virtual model was created. Using data from normal feet as a guide, the talonavicular joint of the cavovarus feet was digitally reduced to a ‘normal’ position. Models of the corrected position were exported and geometrically analysed using Blender 3.6 to identify anatomical trends. Results. We identified 3 types of cavovarus forefoot morphotypes. Type 1 was seen in 13 cases (65%) and was defined as a foot where only the first metatarsal was relatively plantarflexed to the rest of the foot, with no significant residual adduction after talonavicular correction. Type 2 was seen in 4 cases (20%) and was defined as a foot where the second and first metatarsals were progressively plantarflexed, with no significant adduction. Type 3 was seen in 3 cases (15%) and was defined as a foot where the metatarsals were still adducted after talonavicular de-rotation. Conclusion. We classify 3 forefoot morphotypes in cavovarus feet. It is important to recognise and anticipate the residual forefoot deformities after hindfoot correction as different treatment strategies may be required for different morphotypes to achieve balanced correction


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_11 | Pages 7 - 7
4 Jun 2024
Sangoi D Ranjit S Bernasconi A Cullen N Patel S Welck M Malhotra K
Full Access

Background. The complex deformities in cavovarus feet may be difficult to assess and understand. Weight-bearing CT (WBCT) is increasingly used to evaluate complex deformities. However, the bone axes may be difficult to calculate in the setting of severe deformity. Computer-assisted 3D-axis calculation is a novel approach that may allow for more accurate assessment of foot alignment / deformity. The aim of this study was to assess differences in measurements done manually on 2D slices of WBCT versus 3D computer models in normal and cavus feet. Methods. We retrospectively analyzed WBCT scans from 16 normal and 16 cavus feet in patients with Charcot-Marie Tooth. Eight measurements were assessed: Talus-1. st. metatarsal angle (axial plane), Forefoot arch angle (coronal plane), and Meary's angle, calcaneal pitch, cuneiform to floor, cuneiform to skin, navicular to floor and navicular to skin distance (sagittal plane). 2D measurements were performed manually and 3D measurements were performed using specialised software (BoneLogic, DISIOR). Results. There was no significant difference in the measured variables (2D manual versus 3D automated) in normal feet. In the cavus group, 3D assessment calculated increased values for the sagittal angles: Meary's 7.3 degrees greater (p = 0.004), calcaneal pitch 2.4 degrees greater (p = 0.011)), and lower values for the axial talus-1. st. MT angle, 10.6 degrees less (p = 0.001). Conclusion. There were no significant differences in the normal group. This suggests 3D automated techniques can reliably assess the alignment of bony axes. However, the 3D axis calculations suggest there may be greater sagittal and lesser axial deformity in cavus feet than measured by 2D techniques. This discrepancy may be on account of the rotation seen in cavovarus feet, which may not be readily assessed manually. 3D automated measurements may therefore have a role in better assessing and classifying the cavus foot which may ultimately help inform treatment algorithms


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 348 - 352
1 Mar 2019
Patel S Malhotra K Cullen NP Singh D Goldberg AJ Welck MJ

Aims. Cone beam CT allows cross-sectional imaging of the tibiofibular syndesmosis while the patient bears weight. This may facilitate more accurate and reliable investigation of injuries to, and reconstruction of, the syndesmosis but normal ranges of measurements are required first. The purpose of this study was to establish: 1) the normal reference measurements of the syndesmosis; 2) if side-to-side variations exist in syndesmotic anatomy; 3) if age affects syndesmotic anatomy; and 4) if the syndesmotic anatomy differs between male and female patients in weight-bearing cone beam CT views. Patients and Methods. A retrospective analysis was undertaken of 50 male and 50 female patients (200 feet) aged 18 years or more, who underwent bilateral, simultaneous imaging of their lower legs while standing in an upright, weight-bearing position in a pedCAT machine between June 2013 and July 2017. At the time of imaging, the mean age of male patients was 47.1 years (18 to 72) and the mean age of female patients was 57.8 years (18 to 83). We employed a previously described technique to obtain six lengths and one angle, as well as calculating three further measurements, to provide information on the relationship between the fibula and tibia with respect to translation and rotation. Results. The upper limit of lateral translation in un-injured patients was 5.27 mm, so values higher than this may be indicative of syndesmotic injury. Anteroposterior translation lay within the ranges 0.31 mm to 2.59 mm, and -1.48 mm to 3.44 mm, respectively. There was no difference between right and left legs. Increasing age was associated with a reduction in lateral translation. The fibulae of men were significantly more laterally translated but data were inconsistent for rotation and anteroposterior translation. Conclusion. We have established normal ranges for measurements in cross-sectional syndesmotic anatomy during weight-bearing and also established that no differences exist between right and left legs in patients without syndesmotic injury. Age and gender do, however, affect the anatomy of the syndesmosis, which should be taken into account at time of assessment. Cite this article: Bone Joint J 2019;101-B:348–352


Bone & Joint Open
Vol. 4, Issue 12 | Pages 957 - 963
18 Dec 2023
van den Heuvel S Penning D Sanders F van Veen R Sosef N van Dijkman B Schepers T

Aims

The primary aim of this study was to present the mid-term follow-up of a multicentre randomized controlled trial (RCT) which compared the functional outcome following routine removal (RR) to the outcome following on-demand removal (ODR) of the syndesmotic screw (SS).

Methods

All patients included in the ‘ROutine vs on DEmand removal Of the syndesmotic screw’ (RODEO) trial received the Olerud-Molander Ankle Score (OMAS), American Orthopaedic Foot and Ankle Hindfoot Score (AOFAS), Foot and Ankle Outcome Score (FAOS), and EuroQol five-dimension questionnaire (EQ-5D). Out of the 152 patients, 109 (71.7%) completed the mid-term follow-up questionnaire and were included in this study (53 treated with RR and 56 with ODR). Median follow-up was 50 months (interquartile range 43.0 to 56.0) since the initial surgical treatment of the acute syndesmotic injury. The primary outcome of this study consisted of the OMAS scores of the two groups.


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 256 - 261
1 Mar 2024
Goodall R Borsky K Harrison CJ Welck M Malhotra K Rodrigues JN

Aims

The Manchester-Oxford Foot Questionnaire (MOxFQ) is an anatomically specific patient-reported outcome measure (PROM) currently used to assess a wide variety of foot and ankle pathology. It consists of 16 items across three subscales measuring distinct but related traits: walking/standing ability, pain, and social interaction. It is the most used foot and ankle PROM in the UK. Initial MOxFQ validation involved analysis of 100 individuals undergoing hallux valgus surgery. This project aimed to establish whether an individual’s response to the MOxFQ varies with anatomical region of disease (measurement invariance), and to explore structural validity of the factor structure (subscale items) of the MOxFQ.

Methods

This was a single-centre, prospective cohort study involving 6,637 patients (mean age 52 years (SD 17.79)) presenting with a wide range of foot and ankle pathologies between January 2013 and December 2021. To assess whether the MOxFQ responses vary by anatomical region of foot and ankle disease, we performed multigroup confirmatory factor analysis. To assess the structural validity of the subscale items, exploratory and confirmatory factor analyses were performed.


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 472 - 478
1 Apr 2022
Maccario C Paoli T Romano F D’Ambrosi R Indino C Federico UG

Aims

This study reports updates the previously published two-year clinical, functional, and radiological results of a group of patients who underwent transfibular total ankle arthroplasty (TAA), with follow-up extended to a minimum of five years.

Methods

We prospectively evaluated 89 patients who underwent transfibular TAA for end-stage osteoarthritis. Patients’ clinical and radiological examinations were collected pre- and postoperatively at six months and then annually for up to five years of follow-up. Three patients were lost at the final follow-up with a total of 86 patients at the final follow-up.


The Bone & Joint Journal
Vol. 104-B, Issue 6 | Pages 703 - 708
1 Jun 2022
Najefi A Zaidi R Chan O Hester T Kavarthapu V

Aims

Surgical reconstruction of deformed Charcot feet carries a high risk of nonunion, metalwork failure, and deformity recurrence. The primary aim of this study was to identify the factors contributing to these complications following hindfoot Charcot reconstructions.

Methods

We retrospectively analyzed patients who underwent hindfoot Charcot reconstruction with an intramedullary nail between January 2007 and December 2019 in our unit. Patient demographic details, comorbidities, weightbearing status, and postoperative complications were noted. Metalwork breakage, nonunion, deformity recurrence, concurrent midfoot reconstruction, and the measurements related to intramedullary nail were also recorded.


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 68 - 75
1 Jan 2022
Harris NJ Nicholson G Pountos I

Aims

The ideal management of acute syndesmotic injuries in elite athletes is controversial. Among several treatment methods used to stabilize the syndesmosis and facilitate healing of the ligaments, the use of suture tape (InternalBrace) has previously been described. The purpose of this study was to analyze the functional outcome, including American Orthopaedic Foot & Ankle Society (AOFAS) scores, knee-to-wall measurements, and the time to return to play in days, of unstable syndesmotic injuries treated with the use of the InternalBrace in elite athletes.

Methods

Data on a consecutive group of elite athletes who underwent isolated reconstruction of the anterior inferior tibiofibular ligament using the InternalBrace were collected prospectively. Our patient group consisted of 19 elite male athletes with a mean age of 24.5 years (17 to 52). Isolated injuries were seen in 12 patients while associated injuries were found in seven patients (fibular fracture, medial malleolus fracture, anterior talofibular ligament rupture, and posterior malleolus fracture). All patients had a minimum follow-up period of 17 months (mean 27 months (17 to 35)).


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1611 - 1618
1 Oct 2021
Kavarthapu V Budair B

Aims

In our unit, we adopt a two-stage surgical reconstruction approach using internal fixation for the management of infected Charcot foot deformity. We evaluate our experience with this functional limb salvage method.

Methods

We conducted a retrospective analysis of prospectively collected data of all patients with infected Charcot foot deformity who underwent two-stage reconstruction with internal fixation between July 2011 and November 2019, with a minimum of 12 months’ follow-up.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 931 - 938
1 May 2021
Liu Y Lu H Xu H Xie W Chen X Fu Z Zhang D Jiang B

Aims

The morphology of medial malleolar fracture is highly variable and difficult to characterize without 3D reconstruction. There is also no universally accepeted classification system. Thus, we aimed to characterize fracture patterns of the medial malleolus and propose a classification scheme based on 3D CT reconstruction.

Methods

We retrospectively reviewed 537 consecutive cases of ankle fractures involving the medial malleolus treated in our institution. 3D fracture maps were produced by superimposing all the fracture lines onto a standard template. We sliced fracture fragments and the standard template based on selected sagittal and coronal planes to create 2D fracture maps, where angles α and β were measured. Angles α and β were defined as the acute angles formed by the fracture line and the horizontal line on the selected planes.


Bone & Joint Open
Vol. 2, Issue 7 | Pages 503 - 508
8 Jul 2021
Callaghan CJ McKinley JC

Aims

Arthroplasty has become increasingly popular to treat end-stage ankle arthritis. Iatrogenic posterior neurovascular and tendinous injury have been described from saw cuts. However, it is hypothesized that posterior ankle structures could be damaged by inserting tibial guide pins too deeply and be a potential cause of residual hindfoot pain.

Methods

The preparation steps for ankle arthroplasty were performed using the Infinity total ankle system in five right-sided cadaveric ankles. All tibial guide pins were intentionally inserted past the posterior tibial cortex for assessment. All posterior ankles were subsequently dissected, with the primary endpoint being the presence of direct contact between the structure and pin.


Bone & Joint Research
Vol. 2, Issue 12 | Pages 255 - 263
1 Dec 2013
Zhang Y Xu J Wang X Huang J Zhang C Chen L Wang C Ma X

Objective. The objective of this study was to evaluate the rotation and translation of each joint in the hindfoot and compare the load response in healthy feet with that in stage II posterior tibial tendon dysfunction (PTTD) flatfoot by analysing the reconstructive three-dimensional (3D) computed tomography (CT) image data during simulated weight-bearing. . Methods. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot were taken first in a non-weight-bearing condition, followed by a simulated full-body weight-bearing condition. The images of the hindfoot bones were reconstructed into 3D models. The ‘twice registration’ method in three planes was used to calculate the position of the talus relative to the calcaneus in the talocalcaneal joint, the navicular relative to the talus in talonavicular joint, and the cuboid relative to the calcaneus in the calcaneocuboid joint. Results. From non- to full-body-weight-bearing condition, the difference in the talus position relative to the calcaneus in the talocalcaneal joint was 0.6° more dorsiflexed (p = 0.032), 1.4° more everted (p = 0.026), 0.9 mm more anterior (p = 0.031) and 1.0 mm more proximal (p = 0.004) in stage II PTTD flatfoot compared with that in a healthy foot. The navicular position difference relative to the talus in the talonavicular joint was 3° more everted (p = 0.012), 1.3 mm more lateral (p = 0.024), 0.8 mm more anterior (p = 0.037) and 2.1 mm more proximal (p = 0.017). The cuboid position difference relative to the calcaneus in the calcaneocuboid joint did not change significantly in rotation and translation (all p ≥ 0.08). . Conclusion. Referring to a previous study regarding both the cadaveric foot and the live foot, joint instability occurred in the hindfoot in simulated weight-bearing condition in patients with stage II PTTD flatfoot. The method used in this study might be applied to clinical analysis of the aetiology and evolution of PTTD flatfoot, and may inform biomechanical analyses of the effects of foot surgery in the future. Cite this article: Bone Joint Res 2013;2:255–63


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1270 - 1276
1 Jul 2021
Townshend DN Bing AJF Clough TM Sharpe IT Goldberg A

Aims

This is a multicentre, non-inventor, prospective observational study of 503 INFINITY fixed bearing total ankle arthroplasties (TAAs). We report our early experience, complications, and radiological and functional outcomes.

Methods

Patients were recruited from 11 specialist centres between June 2016 and November 2019. Demographic, radiological, and functional outcome data (Ankle Osteoarthritis Scale, Manchester Oxford Questionnaire, and EuroQol five-dimension five-level score) were collected preoperatively, at six months, one year, and two years. The Canadian Orthopaedic Foot and Ankle Society (COFAS) grading system was used to stratify deformity. Early and late complications and reoperations were recorded as adverse events. Radiographs were assessed for lucencies, cysts, and/or subsidence.