Advertisement for orthosearch.org.uk
Results 1 - 20 of 5734
Results per page:

Purpose. We aimed to investigate whether the anterior superior iliac spine could provide consistent rotational landmark of the tibial component during mobile-bearing medial unicompartmental knee arthroplasty (UKA) using computed tomography (CT). Methods. During sagittal tibial resection, we utilized the ASIS as a rotational landmark. In 47 knees that underwent postoperative CT scans after medial UKA, the tibial component position was assessed by drawing a line tangential to the lateral wall of the tibial component. Rotation of the tibial component was measured using two reference lines: a line perpendicular to the posterior cortical rim of the tibia (angle α) and Akagi's line (angle β). Instant bearing position and posterior cruciate ligament fossa involvement were also evaluated. External rotation of the tibial component relative to each reference line and external rotation of the bearing relative to the lateral wall of the tibial component were considered positive values. Results. The mean angle α and β were 8.0 ± 6.1° (range, −4.0 – 24.3) and 8.7 ± 4.8° (range, 1.9 – 25.2), respectively. The mean instant bearing position was 4.3 ± 28.6° (range, −52.9 – 179.7). One bearing showed complete 180° rotation at 2 weeks postoperatively. Fourteen knees (29.8%) showed posterior cruciate ligament fossa involvement of the tibial resection margin. Conclusions. Due to the wide variation in, and inherent difficulty in identification of, the ASIS during the operation, it is not recommended for guidance of sagittal tibial resection during mobile-bearing medial UKA. Level of Evidence: Level IV


Aims. The aim of this study was to review the current evidence surrounding curve type and morphology on curve progression risk in adolescent idiopathic scoliosis (AIS). Methods. A comprehensive search was conducted by two independent reviewers on PubMed, Embase, Medline, and Web of Science to obtain all published information on morphological predictors of AIS progression. Search items included ‘adolescent idiopathic scoliosis’, ‘progression’, and ‘imaging’. The inclusion and exclusion criteria were carefully defined. Risk of bias of studies was assessed with the Quality in Prognostic Studies tool, and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. In all, 6,286 publications were identified with 3,598 being subjected to secondary scrutiny. Ultimately, 26 publications (25 datasets) were included in this review. Results. For unbraced patients, high and moderate evidence was found for Cobb angle and curve type as predictors, respectively. Initial Cobb angle > 25° and thoracic curves were predictive of curve progression. For braced patients, flexibility < 28% and limited in-brace correction were factors predictive of progression with high and moderate evidence, respectively. Thoracic curves, high apical vertebral rotation, large rib vertebra angle difference, small rib vertebra angle on the convex side, and low pelvic tilt had weak evidence as predictors of curve progression. Conclusion. For curve progression, strong and consistent evidence is found for Cobb angle, curve type, flexibility, and correction rate. Cobb angle > 25° and flexibility < 28% are found to be important thresholds to guide clinical prognostication. Despite the low evidence, apical vertebral rotation, rib morphology, and pelvic tilt may be promising factors. Cite this article: Bone Joint J 2022;104-B(4):424–432


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1637 - 1640
1 Dec 2012
Clark DA Upadhyay N Gillespie G Wakeley C Eldridge JD

Ensuring correct rotation of the femoral component is a challenging aspect of patellofemoral replacement surgery. Rotation equal to the epicondylar axis or marginally more external rotation is acceptable. Internal rotation is associated with poor outcomes. This paper comprises two studies evaluating the use of the medial malleolus as a landmark to guide rotation. We used 100 lower-leg anteroposterior radiographs to evaluate the reliability of the medial malleolus as a landmark. Assessment was made of the angle between the tibial shaft and a line from the intramedullary rod entry site to the medial malleolus. The femoral cut was made in ten cadaver knees using the inferior tip of the medial malleolus as a landmark for rotation. Rotation of the cut relative to the anatomical epicondylar axis was assessed using CT. The study of radiographs found the position of the medial malleolus relative to the tibial axis is consistent. Using the inferior tip of the medial malleolus in the cadaver study produced a mean external rotation of 1.6° (0.1° to 3.7°) from the anatomical epicondylar axis. Using the inferior tip of the medial malleolus to guide the femoral cutting jig avoids internal rotation and introduces an acceptable amount of external rotation of the femoral component


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_9 | Pages 18 - 18
16 May 2024
Najefi A Ghani Y Goldberg A
Full Access

Background. The importance of total ankle replacement (TAR) implant orientation in the axial plane is poorly understood with major variation in surgical technique of implants on the market. Our aims were to better understand the axial rotational profile of patients undergoing TAR. Methods. In 157 standardised CT Scans of end-stage ankle arthritis patients planning to undergo primary TAR surgery, we measured the relationship between the knee posterior condylar axis, the tibial tuberosity, the transmalleolar axis(TMA) and the tibiotalar angle. The foot position was measured in relation to the TMA with the foot plantigrade. The variation between medial gutter line and the line bisecting both gutters was assessed. Results. The mean external tibial torsion was 34.5±10.3°(11.8–62°). When plantigrade the mean foot position relative to the TMA was 21±10.6°(0.7–38.4°) internally rotated. As external tibial torsion increased, the foot position became more internally rotated relative to the TMA(pearson correlation 0.6;p< 0.0001). As the tibiotalar angle became more valgus, the foot became more externally rotated relative to the TMA(pearson correlation −0.4;p< 0.01). The mean difference between the medial gutter line and a line bisecting both gutters was 4.9±2.8°(1.7°-9.4°). More than 51% of patients had a difference greater than 5°. The mean angle between the medial gutter line and a line perpendicular to the TMA was 7.5°±2.6°(2.8°-13.7°). Conclusion. There is a large variation in rotational profile of patients undergoing TAR, particularly between the medial gutter line and the transmalleolar axis. Surgeon designers and implant manufacturers need to develop consistent methods to guide surgeons towards judging appropriate axial rotation of their implanton an individual basis. We recommend careful clinical assessment and CT scanspre-operatively to enable the correct rotation to be determined


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_11 | Pages 18 - 18
4 Jun 2024
Najefi AA Alsafi M Katmeh R Zaveri AK Cullen N Patel S Malhotra K Welck M
Full Access

Introduction. Recurrence after surgical correction of hallux valgus may be related to coronal rotation of the first metatarsal. The scarf osteotomy is a commonly used procedure for correcting hallux valgus but has limited ability to correct rotation. Using weightbearing computed tomography (WBCT), we aimed to measure the coronal rotation of the first metatarsal before and after a scarf osteotomy, and correlate these to clinical outcome scores. Methods. We retrospectively analyzed 16 feet (15 patients) who had a WBCT before and after scarf osteotomy for hallux valgus correction. On both scans, hallux valgus angle (HVA), intermetatarsal angle, and anteroposterior/lateral talus-first metatarsal angle were measured using digitally reconstructed radiographs. Metatarsal pronation (MPA), alpha angle, sesamoid rotation angle and sesamoid position was measured on standardized coronal CT slices. Preoperative and postoperative(12 months) clinical outcome scores(MOxFQ and VAS) were captured. Results. Mean HVA was 28.6±10.1 degrees preoperatively and 12.1±7.7 degrees postoperatively. Mean IMA was 13.7±3.8 degrees preoperatively and 7.5±3.0 degrees postoperatively. Before and after surgery, there were no significant differences in MPA (11.4±7.7 and 11.4±9.9 degrees, respectively; p = 0.75) or alpha angle (10.9±8.0 and 10.7±13.1 degrees, respectively; p = 0.83). There were significant improvements in SRA (26.4±10.2 and 15.7±10.2 degrees, respectively; p = 0.03) and sesamoid position (1.4±1.0 and 0.6±0.6, respectively; p = 0.04) after a scarf osteotomy. There were significant improvements in all outcome scores after surgery. Poorer outcome scores correlated with greater postoperative MPA and alpha angles (r= 0.76 (p = 0.02) and 0.67 (p = 0.03), respectively). Conclusion. A scarf osteotomy does not correct first metatarsal coronal rotation, and worse outcomes are linked to greater metatarsal rotation. Rotation of the metatarsal needs to be measured and considered when planning hallux valgus surgery. Further work is needed to compare postoperative outcomes with rotational osteotomies and modified Lapidus procedures when addressing rotation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 31 - 31
1 Feb 2013
Kassam A Ainsworth B Hawken R Ramesh R Conboy V
Full Access

Patients using a neutral rotation brace post proximal humerus fracture fixation have improved functional outcome and external rotation of the shoulder compared to patients using a standard polysling. Patients who have proximal humerus fracture fixation with extramedullary plates and screws have a risk of reduced range of movement especially external rotation. Gerber et al showed that the average external rotation after fixation of proximal humeral fractures was 39 degrees in their patient cohort compared to a normal range of 80–100 degrees. This can lead to reduced function and poor patient related outcomes. Geiger et al showed that in a cohort of 28 patients, poor functional outcome was noted in 39.3% with an average Constant-Murley Score of 57.9. Current practice is to utilise a polysling holding the shoulder in internal rotation post-shoulder fixation. Patients usually wear the sling for up to 6 weeks. We believe that this increases the risk of adhesion formation with the shoulder in internal rotation in the shoulder joint. Therefore this can cause loss of external rotation in the shoulder joint. We believe that holding the shoulder in a neutral alignment, with a neutral rotation brace post-fixation, will enable an increased rate of external rotation post-operatively thus improving external rotation and functional outcome. There is currently no literature comparing the different slings used post-operatively and we believe that this study would be the first of its kind. It would have a substantial change in the way clinicians manage proximal humeral fractures and will potentially reduce the numbers of re-operations to divide adhesions or perform capsular releases. Secondary benefits include a potential earlier return to full function and work and improved patient satisfaction. Study proposal: Prospective Randomised Controlled Trial of the neutral rotation brace compared to the standard, currently used, polysling post proximal humerus fracture fixation. No blinding of either participants or clinicians. Three surgeons utilising similar fixation techniques via the deltopectoral approach and using Philos plate fixation (Synthes Ltd.). Standardised post-operative rehabilitation protocol for all patients. Follow up: clinical review and postal outcomes for 1 year. Primary outcomes: Post operative functional outcome scores (Oxford, DASH, EQL) obtained at 6 weeks, 9 weeks, 3 months and 1 year). These will be compared to scores taken pre-operatively. Secondary outcomes: Clinical review at 6 weeks, 3 months and 1 year with range of movement measurements. Radiographs also taken at 6 weeks and 3 months to assess union. Patient questionnaire at 1 year (with outcome scores) assessing patient return to work, complications and patient satisfaction. Inclusion criteria: Proximal humeral fractures requiring operative intervention with extramedullary plate fixation (i.e. fractures displaced by 1cm and/or angulated by 45 degrees or more). Age>18. Exclusion Criteria: Patients having intra-operative findings of complete Pectoralis major rupture or if operative exposure requires complete Pectoralis major tenotomy. (These patients need to be held in internal rotation with a standard polysling to allow healing of the Pectoralis major tendon)


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims. Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane. Methods. Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation. Results. Overall, 26/40 hips had a centre of rotation displaced posteriorly compared to the contralateral hip, increasing to 33/40 once corrected for sagittal tilt, with a mean posterior displacement of 7 mm. Linear regression analysis indicated that stem anteversion needed to be increased by 10.8° to recreate the head centre in the AP plane. Merely matching the native version would result in a 12 mm posterior displacement. Conclusion. This study demonstrates the significant incidence of posterior displacement of the head centre in uncemented hip arthroplasty. Effects of such displacement include a reduction in impingement free range of motion, potential alterations in muscle force vectors and lever arms, and impaired proprioception due to muscle fibre reorientation. Cite this article: Bone Joint Res 2022;11(3):180–188


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 87 - 87
1 Nov 2021
Muriuki MG
Full Access

Some activities of daily living require that the head be kept level during axial rotation of the cervical spine (Kinematically Constrained Axial Rotation). One such activity is looking over one's shoulder when walking or driving. The kinematic constraint of keeping the head level during axial rotation means that the segmental axis of rotation may not be aligned with the global axis of rotation of the cervical spine. Most of the literature on cervical spine axial rotation is based on experiments where the segmental axis of rotation is aligned with the global axis of rotation (Traditional Axial Rotation). There are only a few clinical and biomechanical studies that have examined kinematically constrained cervical axial rotation. We performed a series of biomechanical experiments in which we tested cervical spines in traditional and kinematically constrained axial rotation. The resulting primary and coupled motions of the segments showed that kinematically constrained axial rotation is distinct from traditional axial rotation. Our findings and the findings of other kinematically constrained axial rotation studies will be compared and contrasted with data from traditional axial rotation studies


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 90
1 Mar 2002
Kastanos K Anderson C
Full Access

Shoulder movements from neutral into flexion, extension, abduction, adduction and external rotation are easily measured with a goniometer. In the neutral position, the glenohumeral ligaments, which act as the reins of the joint, limit movement and are symmetrically relaxed. The torso obstructs internal rotation with the arm adducted at the side and the full range of movement cannot be attained. The torso is cleared when the shoulder is abducted, usually to 90°. However, this degree of abduction places the shoulder within the painful arc of impingement and may influence the degree of internal rotation. Further, owing to shoulder joint stiffness, some patients may not be able to abduct the shoulder to 90°. Because of these problems, it has become internationally accepted to measure internal rotation in the near-neutral position by determining the vertebral level behind the back to which the thumb can reach. We assessed 200 symptomatic and asymptomatic shoulders to determine the correlation between the ‘hand behind back’ and angular measurements of internal rotation at 90° or 30° of abduction


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 49 - 49
23 Feb 2023
Sorial R Coffey S Callary S
Full Access

Roentgen Stereophotogrammetric Analysis (RSA) is the gold standard for measuring implant micromotion thereby predicting implant loosening. Early migration has been associated with the risk of long-term clinical failure. We used RSA to assess the stability of the Australian designed cementless hip stem (Paragon TM) and now report our 5-year results. Fifty-three patients were prospectively and consecutively enrolled to receive a Paragon hip replacement. Tantalum beads were inserted into the bone as per RSA protocol and in the implant. RSA x-rays were taken at baseline 1–4 days post-surgery, at 6 weeks, 6 months, 12 months, 2 years, and 5 years. RSA was completed by an experienced, independent assessor. We reported the 2-year results on 46 hips (ANZJS 91 (3) March 2021 p398) and now present the 5-year results on 27 hips. From the 2-year cohort 5 patients had died, 8 patients were uncontactable, 1 patient was too unwell to attend, 5 patients had relocated too far away and declined. At 5 years the mean axial subsidence of the stem was 0.66mm (0.05 to 2.96); the mean rotation into retroversion was 0.49˚ (−0.78˚ to 2.09˚), rotation of the stem into valgus was −0.23˚ (−0.627˚ to 1.56˚). There was no detectable increase in subsidence or rotation between 6 weeks and 5 years. We compared our data to that published for the Corail cementless stem and a similar pattern of migration was noted, however greater rotational stability was achieved with the Paragon stem over a comparable follow-up period. The RSA results confirm that any minor motion of the Paragon cementless stem occurs in the first 6 weeks after which there is sustained stability for the next 5 years. The combination of a bi-planar wedge and transverse rectangular geometry provide excellent implant stability that is comparable to or better than other leading cementless stems


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 43 - 48
1 Jun 2020
D’Lima DP Huang P Suryanarayan P Rosen A D’Lima DD

Aims. The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation. Methods. We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph. Results. Axial rotation of the cutting guide induced a varus-valgus malalignment up to 1.8° (for 15° of axial rotation combined with 7° of posterior slope). Axial malrotation of tibial tray induced a substantially higher risk of coronal plane malalignment ranging from 1.9° valgus with 15° external rotation, to over 3° varus with 25° of internal rotation. Coronal alignment of the tibial cut changed by 0.07° per degree of axial rotation and 0.22° per degree of posterior slope (linear regression, R. 2. > 0.99). Conclusion. While the effect of axial malalignment has been studied, the impact on coronal alignment is not known. Our results indicate that the direction of the cutting guide and malalignment in axial rotation alter coronal plane alignment and can increase the incidence of outliers. Cite this article: Bone Joint J 2020;102-B(6 Supple A):43–48


Bone & Joint Open
Vol. 2, Issue 7 | Pages 476 - 485
8 Jul 2021
Scheerlinck T De Winter E Sas A Kolk S Van Gompel G Vandemeulebroucke J

Aims. Hip arthroplasty does not always restore normal anatomy. This is due to inaccurate surgery or lack of stem sizes. We evaluated the aptitude of four total hip arthroplasty systems to restore an anatomical and medialized hip rotation centre. Methods. Using 3D templating software in 49 CT scans of non-deformed femora, we virtually implanted: 1) small uncemented calcar-guided stems with two offset options (Optimys, Mathys), 2) uncemented straight stems with two offset options (Summit, DePuy Synthes), 3) cemented undersized stems (Exeter philosophy) with three offset options (CPT, ZimmerBiomet), and 4) cemented line-to-line stems (Kerboul philosophy) with proportional offsets (Centris, Mathys). We measured the distance between the templated and the anatomical and 5 mm medialized hip rotation centre. Results. Both rotation centres could be restored within 5 mm in 94% and 92% of cases, respectively. The cemented undersized stem performed best, combining freedom of stem positioning and a large offset range. The uncemented straight stem performed well because of its large and well-chosen offset range, and despite the need for cortical bone contact limiting stem positioning. The cemented line-to-line stem performed less well due to a small range of sizes and offsets. The uncemented calcar-guided stem performed worst, despite 24 sizes and a large and well-chosen offset range. This was attributed to the calcar curvature restricting the stem insertion depth along the femoral axis. Conclusion. In the majority of non-deformed femora, leg length, offset, and anteversion can be restored accurately with non-modular stems during 3D templating. Failure to restore hip biomechanics is mostly due to surgical inaccuracy. Small calcar guided stems offer no advantage to restore hip biomechanics compared to more traditional designs. Cite this article: Bone Jt Open 2021;2(7):476–485


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 54 - 54
1 Feb 2020
Muir J Benson J Napenas J Vigdorchik J
Full Access

Anteroposterior (AP) pelvic radiographs are the standard tool used for pre-operative planning and post-operative evaluation during total hip arthroplasty (THA). The accuracy of this imaging modality is, however, limited by errors in pelvic orientation and image distortion. Pelvic obliquity is corrected for by orienting measurements to a reference line such as the interteardrop line or the interischial line, while several methods for correcting for pelvic tilt have been suggested, with varying levels of success. To date, no reliable method for correcting for pelvic rotation on pelvic imaging is available. The purpose of this study was to evaluate a novel method for correcting pelvic rotation on a standard anteroposterior (AP) radiographs. Computed tomography (CT) scans from 10 male cadavers and 10 female THA patients were segmented using 3D Slicer and used to create 3D renderings for each pelvis. Synthetic AP radiographs were subsequently created from the 3D renderings, using XRaySim. For each pelvis, images representing pelvic rotation of 30° left to 30° right, at 5° increments were created. Four unique parameters based on pelvic landmarks were used to develop the correction method: i) the horizontal distance from the upper edge of the pubic symphysis to the sacroiliac joint midline (PSSI), ii) the ratio of the horizontal distances from the upper edge of the pubic symphysis to the outer lateral border of both obturator foramina (PSOF), iii) the width ratio of the obturator foramina (OFW) and iv) the ratio of the horizontal distance from each anterior superior iliac spine to the sacroiliac joint midline (ASISSI). The relationships between the chosen parameters and pelvic rotation were investigated using a series of 260 (13 per pelvis) synthetic AP radiographs. Male and female correction equations were generated from the observed relationships. Validation of the equations was done using a different set of 50 synthetic radiographs with known degrees of rotation. In males, the PSSI parameter was most reliable in measuring pelvic rotation. In females, PSOF was most reliable. A high correlation was noted between calculated and true rotation in both males and females (r=0.99 male, r=0.98 female). The mean difference from the male calculated rotation and true rotation value was 0.02°±1.8° while the mean difference from the female calculated rotation and true rotation value was −0.01°±1.5°. Our correction method for pelvic rotation using four pelvic parameters provides a reliable method for correcting pelvic rotation on AP radiographs. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 120 - 120
1 Apr 2019
McKenna R Jacobs H Walter W
Full Access

Background. Accurate implant positioning is of supreme importance in total knee replacement (TKR). The rotational profile of the femoral and tibial components can affect outcomes, and the aim is to achieve coronal conformity with parallelism between the medio-lateral axes of the femur and tibia. Aims. The aim of this study is to determine the accuracy of implant rotation in total knee replacement. Methods. Intra-operatively, the trans-epicondylar axis of the femur (TEA) and Whiteside's line were used as the reference points, aiming to externally rotate the femoral component by 1 degree. The medial third of the tibial tuberosity was used as the anatomical reference point, aiming to reproduce the rotation of the native tibia. Pre-and post-operative CT scans were reviewed. The difference in femoral rotation was calculated by determining the femoral posterior condylar axis (PCA) of the native femur pre-operatively and the implant post-operatively. Tibial rotational difference was calculated between the native tibial posterior condylar axis and tibial baseplate. Results. Pre and post-operative CT scans of 41 knees in 31 patients were analysed. All surgeries were carried out by a single surgeon using the same implant. The mean difference in rotation of the femur post-operatively was 1.2 degrees external rotation (ER), range −4.7 to 6.9 degrees ER. 83% of femoral components were within 3 degrees of the target rotation. Mean difference in tibial rotation was −3.8 degrees ER, range −11.1 to 12.4 ER. Only 39% of tibial components were within 3 degrees of the target rotation. A line perpendicular to the midpoint of the tibial PCA was actually medial to the tibial tubercle in 33 knees, and only corresponded to the medial 1/3 of the tibial tubercle in 8 of 41 knees. Conclusions. Femoral component rotation is seen to be more accurate than tibial in this group. It may be that the anatomical landmarks used intra-operatively to judge tibial rotation are more difficult to accurately identify. Posterior landmarks are difficult to locate in vivo. This study would suggest that using the anterior anatomical landmark of the medial 1/3 of the tibial tubercle does not allow accurate reproduction of tibial rotation in total knee replacement


Bone & Joint Open
Vol. 2, Issue 10 | Pages 813 - 824
7 Oct 2021
Lerch TD Boschung A Schmaranzer F Todorski IAS Vanlommel J Siebenrock KA Steppacher SD Tannast M

Aims. The effect of pelvic tilt (PT) and sagittal balance in hips with pincer-type femoroacetabular impingement (FAI) with acetabular retroversion (AR) is controversial. It is unclear if patients with AR have a rotational abnormality of the iliac wing. Therefore, we asked: are parameters for sagittal balance, and is rotation of the iliac wing, different in patients with AR compared to a control group?; and is there a correlation between iliac rotation and acetabular version?. Methods. A retrospective, review board-approved, controlled study was performed including 120 hips in 86 consecutive patients with symptomatic FAI or hip dysplasia. Pelvic CT scans were reviewed to calculate parameters for sagittal balance (pelvic incidence (PI), PT, and sacral slope), anterior pelvic plane angle, pelvic inclination, and external rotation of the iliac wing and were compared to a control group (48 hips). The 120 hips were allocated to the following groups: AR (41 hips), hip dysplasia (47 hips) and cam FAI with normal acetabular morphology (32 hips). Subgroups of total AR (15 hips) and high acetabular anteversion (20 hips) were analyzed. Statistical analysis was performed using analysis of variance with Bonferroni correction. Results. PI and PT were significantly decreased comparing AR (PI 42° (SD 10°), PT 4° (SD 5°)) with dysplastic hips (PI 55° (SD 12°), PT 10° (SD 6°)) and with the control group (PI 51° (SD 9°) and PT 13° (SD 7°)) (p < 0.001). External rotation of the iliac wing was significantly increased comparing AR (29° (SD 4°)) with dysplastic hips (20°(SD 5°)) and with the control group (25° (SD 5°)) (p < 0.001). Correlation between external rotation of the iliac wing and acetabular version was significant and strong (r = 0.81; p < 0.001). Correlation between PT and acetabular version was significant and moderate (r = 0.58; p < 0.001). Conclusion. These findings could contribute to a better understanding of hip pain in a sitting position and extra-articular subspine FAI of patients with AR. These patients have increased iliac external rotation, a rotational abnormality of the iliac wing. This has implications for surgical therapy with hip arthroscopy and acetabular rim trimming or anteverting periacetabular osteotomy (PAO). Cite this article: Bone Jt Open 2021;2(10):813–824


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 25 - 31
1 May 2024
Yasunaga Y Oshima S Shoji T Adachi N Ochi M

Aims. The objective of this study was to present the outcomes of rotational acetabular osteotomy (RAO) over a 30-year period for osteoarthritis (OA) secondary to dysplasia of the hip in pre- or early-stage OA. Methods. Between September 1987 and December 1994, we provided treatment to 47 patients (55 hips) with RAO for the management of pre- or early-stage OA due to developmental hip dysplasia. Of those, eight patients (11 hips) with pre-OA (follow-up rate 79%) and 27 patients (32 hips) with early-stage OA (follow-up rate 78%), totalling 35 patients (43 hips) (follow-up rate 78%), were available at a minimum of 28 years after surgery. Results. In the pre-OA group, the mean Merle d'Aubigné score improved significantly from 14.5 points (SD 0.7) preoperatively to 17.4 points at final follow-up (SD 1.2; p = 0.004) and in the early-stage group, the mean score did not improve significantly from 14.0 (SD 0.3) to 14.6 (SD 2.4; p = 0.280). Radiologically, the centre-edge angle, acetabular roof angle, and head lateralization index were significantly improved postoperatively in both groups. Radiological progression of OA was observed in two patients (two hips) in the pre-OA group and 17 patients (18 hips) in the early-stage group. Kaplan-Meier survival analysis, with radiological progression of OA as the primary outcome, projected a 30-year survival rate of 81.8% (95% confidence interval (CI) 0.59 to 1.00) for the pre-OA group and 42.2% (95% CI 0.244 to 0.600) for the early-stage group. In all cases, the overall survival rate stood at 51.5% (95% CI 0.365 to 0.674) over a 30-year period, and when the endpoint was conversion to total hip arthroplasty, the survival rate was 74.0% (95% CI 0.608 to 0.873). Conclusion. For younger patients with pre-OA, joint preservation of over 30 years can be expected after RAO. Cite this article: Bone Joint J 2024;106-B(5 Supple B):25–31


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 511 - 511
1 Sep 2012
Rienmüller A Guggi T Von Knoch F Drobny T Preiss S
Full Access

Introduction. Patellofemoral complications remain a very common post-operative problem in association with total knee arthoplasty (TKA). As malrotation of the femoral component is often considered crucial for the outcome, we analyzed absolute rotational femoral alignment in relation to patellar tracking pre- and postoperatively and matched the results with the two year functional outcome. Methods. Femoral rotation and component rotation was assessed by axial radiography using condylar twist angle (CTA). The lateral patellar displacement, patellar tilt and Insall-Salvati index were measured on conventional radiographs. All assessments were done pre-operatively and at 2-year follow up. The series included 48 consecutive TKA (21 men, 27 women) performed at a single high-volume joint-replacement-center in 2008. All operations were performed using a tibia first-ligament balancing technique without patella resurfacing. The implant used was a condylar unconstrained ultracongruent rotating platform design. Outcome was assessed using the international knee society score (KSS) and the Kujala Score for anterior knee pain. Results. Preoperative CTA showed 6.4±2. 5° (X±SD) of internal femoral rotation (IR) (range, 1° of external rotation (ER) to 12° of IR) compared to postoperative CTA of 3.9°±2.98° (X±SD) of IR (range, 9.5° IR to 3.8°of ER) Preoperative patella lateral displacement showed a mean of 1.1mm (−2mm, 6mm), compared to postoperative patella lateral displacement with a mean of 1.7mm (−3mm, 6mm). Postoperative mean patella tilt was 6.65° (1.8°, 11.7°) postoperatively compared to 8.55° (4.3°,11.5°) preoperatively. No correlation was found between CTA post surgery and patella positioning (r=0.034, 95% CI). IR of the femoral component >3°did not show increased patella lateral displacement/tilt compared to 0° or ER. No correlation was found between the Kujala score and internal rotation of the component (r=0.082, p=0.05). At 2 year post OP KSS reached > 185 of max. 200 points in over 82% of patients. Conclusion. The influence of IR of the femoral component on patellofemoral kinematics remains controversial. As demonstrated, IR does not imperatively lead to patella maltracking and/or patellofemoral symptoms. Functional outcome in this series shows that relative rotation of the femoral component in accordance with natural variations as seen in the pre-operative assessment allows for good and excellent results


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 17 - 17
1 Oct 2020
Hooper J Lawson K Amanatullah D Hamad C Angibaud L Huddleston JI
Full Access

Introduction. Instability is a common reason for revision after total knee arthroplasty. A balanced flexion gap is likely to enhance stability throughout the arc of motion. This is achieved differently by the gap balancing and measured resection techniques. Given similar clinical results with the two techniques, one would expect similar rotation of the femoral component in the axial plane. We assessed posterior-stabilized femoral component axial rotation placed with computer navigation and a modified gap balancing technique. We hypothesized that there would be little variation in rotation. Methods. 90 surgeons from 8 countries used a modified gap-balancing technique and the same posterior-stabilized implant for this retrospective study. Axial rotation of the femoral component was collected from a navigation system and reported relative to the posterior condylar line. Patients were stratified by their preoperative coronal mechanical alignment (≥ 3° varus, < 3° varus to < 3° valgus, and ≥ 3° valgus). Results. 2442 consecutive patients were included in the analysis; 835 with ≥ 3° varus, 1343 with < 3° varus to < 3° valgus, and 264 with ≥ 3° valgus. Mean rotation was external 2.4. 0. +/− 3.4. 0. (range, 10. 0. internal − 21. 0. external). In 16.4% of the cohort, axial rotation was set in a position of internal rotation. In 15.6% of the cohort, axial rotation was set at > 5. 0. of external rotation. Compared to both the neutral and varus groups, valgus knees required a different mean rotation to achieve a balanced flexion gap (p < .0001). Conclusion. These data show a wide range of femoral rotation was needed to achieve a rectangular flexion gap. This suggests that choosing a pre-determined femoral implant axial rotation (measured resection) may lead to flexion gap asymmetry more frequently compared to adjusting the axial rotation intraoperatively (gap-balancing). Correlation to clinical outcome scores is needed


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 47 - 47
1 Feb 2021
Catelli D Grammatopoulos G Cotter B Mazuchi F Beaule P Lamontagne M
Full Access

Introduction. Interactions between hip, pelvis and spine, as abnormal spinopelvic movements, have been associated with inferior outcomes following total hip arthroplasty (THA). Changes in pelvis position lead to a mutual change in functional cup orientation, with both pelvic tilt and rotation having a significant effect on version. Hip osteoarthritis (OA) patients have shown reduced hip kinematics which may place increased demands on the pelvis and the spine. Sagittal and coronal planes assessments are commonly done as these can be adequately studied with anteroposterior and lateral radiographs. However, abnormal pelvis rotation is likely to compromise the outcome as they have a detrimental effect on cup orientation and increased impingement risk. This study aims to determine the association between dynamic motion and radiographic sagittal assessments; and examine the association between axial and sagittal spinal and pelvic kinematics between hip OA patients and healthy controls (CTRL). Methods. This is a prospective study, IRB approved. Twenty hip OA pre-THA patients (11F/9M, 67±9 years) and six CTRL (3F/3M, 46±18 years) underwent lateral spinopelvic radiographs in standing and seated bend-and-reach (SBR) positions. Pelvic tilt (PT), pelvic-femoral-angle (PFA) and lumbar lordosis (LL) angles were measured in both positions and the differences (Δ) between standing and SBR were calculated. Dynamic SBR and seated maximal-trunk-rotation (STR) were recorded in the biomechanics laboratory using a 10-infrared camera and processed on a motion capture system (Vicon, UK). Direct kinematics extracted maximal pelvic tilt (PT. max. ), hip flexion (HF. max. ) and (mid-thoracic to lumbar) spinal flexion (SF. max. ). The SBR pelvic movement contribution (ΔPT. rel. ) was calculated as ΔPT/(ΔPT+ΔPFA)∗100 for the radiographic analysis and as PT. max. /(PT. max. +HF. max. ) for the motion analyses. Axial and sagittal, pelvic and spinal range of motion (ROM) were calculated for STR and SBR, respectively. Spearman's rank-order determined correlations between the spinopelvic radiographs and sagittal kinematics, and the sagittal/axial kinematics. Mann-Whitney U-tests compared measures between groups. Results. Radiograph readings correlated with sagittal kinematics during SBR for ΔPT and PT. max. (ρ=0.64, p<0.001), ΔPFA and HF. max. (ρ=0.44, p<0.0002), and ΔLL and SF. max. (ρ=0.34, p=0.002). Relative pelvic movements (ΔPT. rel. ) were not different between radiographic (11%±21) and biomechanical (15%±29) readings (p=0.9). Sagittal SRB spinal flexion correlated with the axial STR rotation (ρ=0.43, p<0.0001). Although not seen in CTRL, sagittal SRB pelvic flexion strongly correlated with STR pelvic rotation in OA patients (ρ=0.40, p=0.002). All spinopelvic parameters were different between the patients with OA and CTRL. CTRLs exhibited significantly greater mobility and less variability in all 3 segments (spine, pelvis, hip) and both planes (axial and sagittal) (Table 1). Conclusion. Correlation between sagittal kinematics and radiographical measurements during SBR validates the spinopelvic mobility assessments in the biomechanics laboratory. Axial kinematics of both pelvis and spine correlated significantly in OA patients, suggesting that patients with abnormal sagittal mobility are likely to also exhibit abnormal axial mobility, which can further potentiate any at-risk kinematics. Significantly lower OA ROM must be investigated post-THA. Pre-THA variability of both sagittal and axial movements indicates that both planes must be considered ahead of surgical planning with navigation and/or robotics. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 15 - 15
1 Oct 2020
Li G Zhou C Rao Z Bedair H
Full Access

Introduction. Medial pivoting motion of the knee has been widely assumed in total knee arthroplasty (TKA) research, but was not consistently observed in recent studies of in vivo knee motion. This study investigated the in vivo motion characters of the knee by analyzing the axial tibial rotation and tibiofemoral articular contact motion during a weightbearing flexion and a treadmill gait. Methods. In vivo kinematics of eight living human knees during a weightbearing flexion and a treadmill gait was determined using a combined MRI and dual fluoroscopic imaging system technique. The axial tibial rotation and the tibiofemoral cartilage contact point motion on both the tibial plateau and femoral condyle surfaces were analyzed. Results. While internal tibial rotation was observed with flexion of the knee during the two activities, larger excursions of the tibiofemoral contact points were measured on the medial femoral condyle surface than on the lateral side during the weightbearing flexion of the knee. The contact point excursions were also larger on the medial tibial plateau surface than on the lateral side during the treadmill gait. The contact points moved anteriorly with flexion and posteriorly with extension of the knee on the medial tibial surface during the gait, that was opposite to the femoral rollback observed during the weightbearing knee flexion. Conclusion. The data indicates that the in-vivo knee motion is activity- and loading-dependent and cannot be described using a single motion character. The knee could potentially rotate with respect to an axis located at the lateral side of the knee and the traditional “medial pivoting” motion character of the knee was not observed in these in-vivo activities. The data could provide important implications for the improvement of TKA designs and implantation techniques that are aimed to restore normal knee function