Purpose. Various alignment philosophies for total knee arthroplasty (TKA) have been described, all striving to achieve excellent long-term implant survival and good functional outcomes. In recent years, in search of higher functionality and patient satisfaction, a shift towards more patient-specific alignment is seen.
Introduction. Technology in Orthopaedic surgery has become more widespread in the past 20 years, with emerging evidence of its benefits in arthroplasty. Although patients are aware of benefits of conventional joint replacement, little is known on patients' knowledge of the prevalence, benefits or drawbacks of surgery involving navigation or robotic systems. Materials & Methods. In an outpatient arthroplasty clinic, 100 consecutive patients were approached and given questionnaires to assess their knowledge of Navigation and
Despite the success of total hip arthroplasty (THA), there are still challenges including restoration of leg length, offset, and femoral version. The Tsolution One combines preoperative planning with an active robotic system to assist in femoral canal preparation during a THA. To demonstrate the use of an active robotic system in femoral implant placement and determine the accuracy of femoral implant position. This was evaluated in a cadaveric study.Background
Purpose of Study
Unicompartmental knee arthroplasty has been shown to have lower morbidity, quicker rehabilitation and more normal kinematics compared to conventional TKA, but subchondral defects, or severe osteoarthritic changes, of the medial compartment may complicate component positioning. Successful UKA in these patients requires proper planning and exact placement of the components to ensure adequate and stable fixation and proper postoperative kinematics. This study presents a series of three patients with spontaneous osteonecrosis of the knee receiving a UKA with CT-based haptic robotic guidance. This series includes two females and one male with spontaneous osteonecrosis of the medial femoral condyle who underwent outpatient mini-incision medial UKA using the MAKO Surgical Rio Robotic Arm System. Pre-operatively all patients were found to have pain with weight bearing that would not improve despite non-arthroplasty treatment.Introduction:
Methods:
There is an increasing prevalence of haptic devices in many engineering fields, especially in medicine and specifically in surgery. The stereotactic haptic boundaries used in Computer Aided Orthopaedic Surgery Unicomparmental Knee Arthroplasty (CAOS UKA) systems for assistive milling control can lead to an increase in the force required to manipulate the device; this study presented here has seen a several fold increase in peak forces between haptic and non-haptic conditions of a semi-active preoperative image system. Orthopaedic Arthroplasty surgeons are required to apply forces ranging from large gripping forces to small forces for delicate manipulation of tools and through a large range of postures. There is also a need for surgeons to move around and position themselves to gain line of sight with the object of interest and to operate while wearing additional clothing such as the protective headwear and double gloves. These factors further complicate comparison with other ergonomic studies of other robotics systems. While robotics has been implemented to reduce fatigue in surgery one area of concern in CAOS is localised user muscle fatigue in high volume use. In order to create the conditions necessary for the generation of fatigue in a realistic user experience, but in the time available for the participants, an extended period of controlled and prolonged cutting and manipulation of the robotic arm was needed. This pragmatic test requirement makes the test conditions slightly artificial but does indicate areas of high potential for fatigue when interacting with the system in high volume instances. The surgeon-robotic system interaction was captured using 3 dimensional motion analysis and a force transducer embedded in the end effector of the robotic arm and modelled using an existing upper body model in Anybody software. The kinematic and force information allowed initial calculations of the interaction between the user and the Robotic system. Validation of the model was conducted using Electromyography assessment of activity and fatigue. Optimisation of the model sought to create an efficient cutting regime to reduce cutting time with reduced muscle force in an attempt to reduce users discomfort/fatigue while taking into account anthropometric variations in the users and minimising overall energy requirements, burr path length and maximum muscle force. From the assessment of a small group of three surgeons with experience of the Robotic system there was little to no experience of above normal localised fatigue during small volume use of the system. Observation of these surgeons operating the robot state otherwise with examples of reactions to discomfort. There is also anecdotal evidence that fatigue becomes more problematic in higher volume work loads.
Introduction.
Introduction.
One of the more difficult tasks in surgery is to apply the optimal instrument forces and torques necessary to conduct an operation without damaging the tissue of the patient. This is especially problematic in surgical robotics, where force-feedback is totally eliminated. Thus, force sensing instruments emerge as a critical need for improving safety and surgical outcome. We propose a new measurement system that can be used in real fracture surgeries to generate quantitative knowledge of forces/torques applied by surgeon on tissues. We instrumented a periosteal elevator with a 6-DOF load-cell in order to measure forces/torques applied by the surgeons on live tissues during fracture surgeries. Acquisition software was developed in LabView to acquire force/torque data together with synchronised visual information (USB camera) of the tip interacting with the tissue, and surgeon voice recording (microphone) describing the actual procedure. Measurement system and surgical protocol were designed according to patient safety and sterilisation standards. The developed technology was tested in a pilot study during real orthopaedic surgery (consisting of removing a metal plate from the femur shaft of a patient) resulting reliable and usable. As demonstrated by subsequent data analysis, coupling force/torque data with video and audio information produced quantitative knowledge of forces/torques applied by the surgeon during the surgery. The outlined approach will be used to perform intensive force measurements during orthopaedic surgeries. The generated quantitative knowledge will be used to design a force controller and optimised actuators for a robot-assisted fracture surgery system under development at the Bristol
Purpose. The goal of Total Ankle Arthroplasty (TAA) is to relieve pain and restore healthy function of the intact ankle. Restoring intact ankle kinematics is an important step in restoring normal function to the joint. Previous robotic laxity testing and functional activity simulation showed the intact and implanted motion of the tibia relative to the calcaneus is similar. However there is limited data on the tibiotalar joint in either the intact or implanted state. This current study compares modern anatomically designed TAA to intact tibiotalar motion. Method. A robotic testing system including a 6 DOF load cell (AMTI, Waltham, MA) was used to evaluate a simulated functional activity before and after implantation of a modern anatomically designed TAA (Figure 1). An experienced foot and ankle surgeon performed TAA on five fresh-frozen cadaveric specimens. The specimen tibia and fibula were potted and affixed to the robot arm (KUKA
Background.
1. Role of enabling technologies in THA: Setting the stage. a. Impact of component position in THA. 1. Wear/lysis. Effect of edge loading, impingement. 2. Instability. Together, the most common cause for revision hip arthroplasty. b. Ideal component position:. 1. Work of Lewinneck: the “safe zone” for stability. c. Can we achieve this?. 1. HSS study. 2. Mass General Study: 2000 THR's, only 50% within desired range. d. Need for assistance? Maybe?. 2. Types of Guidance:. a. Navigation: use of mechano or optical tracking system that after some registration acquisition, facilitate spatial placement. The systems can either be image based (pre-operative CT scan) or imageless where multiple points are acquired and a “best fit” is matched to a library of pelvic geometries. b.
Introduction. Technology in Orthopaedic surgery has become more widespread in the past 20 years, with emerging evidence of its benefits in arthroplasty. Although patients are aware of benefits of conventional joint replacement, little is known on patients' knowledge of the prevalence, benefits or drawbacks of surgery involving navigation or robotic systems. Materials and methods. In an outpatient arthroplasty clinic, 100 consecutive patients were approached and given questionnaires to assess their knowledge of Navigation and
Introduction:. Following total knee arthroplasty, patients often complain of an unnatural feeling in their knee joint, which in turn limits their activities [Noble et al, CORR 2006]. To develop an implant design that recreates the motion of the natural knee, both the functional kinematics as well as the laxity of the joint need to be understood. In vitro testing that accurately quantifies the functional kinematics and laxity of the knee joint can facilitate development of implant designs that are more likely to result in a natural feeling, reconstructed knee. The objective of this study is to demonstrate that robotic in vitro testing can produce clinically relevant functional kinematics and joint laxities. Methods:. All testing was performed using a KUKA (KUKA