Introduction. Mechanically aligned total knee arthroplasty(TKA) relies on restoring the hip-knee-ankle angle of the limb to neutral or as close to a straight line as possible. This principle is based on studies that suggest limb and knee alignment is related long term survival and wear. For that cause, there has been recent attention concerning computer-assisted TKA and robot is also one of the most helpful instruments for restoring neutral alignment as known. But many reported data have shown that 20% to 25% of patients with mechanically aligned TKA are dissatisfied. Accordingly, kinematically aligned TKA was implemented as an alternative alignment strategy with the goal of reducing prevalence of unexplained pain, stiffness, and instability and improving the rate of recovery, kinematics, and contact forces. So, we want to report our extremely early experience of
Among many factors that influence the outcomes of Total Knee Arthroplasties (TKAs), the mechanical alignment has played major roles for the success of TKA, the survival rates of the implants, and patient functionality. Most, but not all, studies have shown that alignment of the mechanical axis in the coronal plane within a range of 3° varus/valgus is associated with improved long-term function and increased survival rates.
An intelligent bone cutting tool as well as a navigation system is of high potential to provide great assistance for the surgeons in computer assisted orthopedic surgery. In this paper we designed a coordinated controller for the surgical robot to perform bone cutting more safely, easily and fast compared with being performed by manual bone saw. Coordinated control is in an outer control loop and determines suitable parameters of the inner control loop of the robot. The inner control loop is an admittance controller for the master site and a compliance controller for the slave site. Coordinated control consists of three modes, i.e. automated cutting, cautious cutting and automated prevention depending on bone cutting conditions and human intention. In automated cutting mode, the coordinated control will set larger admittance gain and smaller compliance gain to provide an assistant force to the human for completion of bone cutting. In cautious cutting mode, smaller admittance gain and larger compliance gain will be set and a resistant force will be provided to the operator for micro progress of bone cutting. In emergence mode, the robot will stop the cutter going forward. Experimental result shows that in automated mode of the proposed coordinated control was able to assist bone cutting at the same time to avoid undesired large cutting force and cutter breakage. The moving speed of cutter slowed down as the cutting forces increased due to the cutter hitting harder bone, thus alleviated sawblade bouncing up and achieved less deviation from designed cutting plane. In cautious cutting mode the cutting forces were magnified to be felt by the operator. The operator was able to perform micro progress of bone cutting with intensive monitoring of the cutting forces. This functionality is especially useful as the cutter approaches the critical area where the surgeon regards as dangerous region. The emergent mode was also successfully triggered by calculating the defined apparent admittance. The apparent admittance is more reliable than using the cutting force only in detection of cutting boundary. A hand's on robot under coordinated control is demonstrated in conjunction with surgical navigation system in computer assisted orthopedic surgery. This paper experimentally showed that the coordinated control can effective provide assistive and resistant forces to achieve safe and accurate bone cutting in total knee arthroplasty.
As a new generation of robotic systems is introduced into the world of arthroplasty, Robotic-Assisted Total Knee Arthroplasty (TKA) represents a growing proportion of a reconstructive surgeon's operative volume. This study aims to compare the post-operative readmission rate, pain scores, costs, as well as the effects on surgeon efficiency one year after adoption of these technologies into clinical practice. A retrospective chart review was conducted regarding all conventional and robotic-assisted TKAs performed by a single surgeon in the year following January 1, 2017, the date MAKO Robotic-Assisted TKAs were introduced at our intuition. All patients over age 18 with a diagnosis of primary osteoarthritis of the knee who underwent TKA during this period were identified. Records were analyzed for differences in readmission, pain scores, tourniquet time, and operating room charges.Background/Introduction
Methods
A functional total knee replacement has to be well aligned, which implies that it should lie along the mechanical axis and in the correct axial and rotational planes. Incorrect alignment will lead to abnormal wear, early mechanical loosening, and patellofemoral problems. There has been increased interest of late in total knee arthroplasty with robot assistance. This study was conducted to determine if
Introduction. The success of total knee arthroplasty depends on many factors, including the preoperative condition of the patient, the design and materials of the components and surgical techniques. It is important to position the femoral and tibial components accurately and to balance the soft tissues. Malpositioning of the component can lead to failures due to aseptic loosening, instability, polyethylene wear and dislocation of the patella. In order to improve post-operative alignment, computer-aid systems have been developed for total knee arthroplasty. Many clinical and experimental studies of these systems have shown that the accuracy of implanted components can be improved in spite of the increase in costs and operating time. This may not, however, improve the outcome in the short-term. Restoration of the normal mechanical axis of the knee and balancing of the surrounding soft tissues have been shown to have an important bearing on the final outcome of knee replacement operations. In severely deformed knees, whether varus or valgus, these goals may be difficult to achieve. We compared the radiologic results of the mechanical axis and implant position of Total Knee Arthroplasty using a robot-assisted method with conventional manually implanted method in severe varus deformed knee. Materials and Methods. A data set of 50 consecutive cases that were performed from April 2007 to December 2010 using the robot assisted TKA(Group A) were compared with a data set of 50 consecutive cases from the same period that were done using conventional manual TKA(Group B). All cases had a preoperative mechanical varus deformity >15° and one brand of implant was used on all cases. The diagnosis was primary osteoarthritis in all knees. The operations were performed by one-senior author with the same robot system, ROBODOC (ISS Inc., CA, USA) along with the ORTHODOC (ISS Inc., CA, USA) planning computer. (See Figure 1.) The radiological evaluations included mechanical axis, implant position (α,β,γ,δ angle) according to the system of American Knee Society. Results. There was a significant difference in the postoperative α, β, γ angle and mechanical axis between two group(p<0.05). In group A, mechanical axis angle changed from preoperative varus 18.5±3.3° to postoperative varus 0.6±1.5° without outlier. In group B, mechanical axis angle changed from varus 19.4±4.2° to varus 2.5±3.8° with 8 outliers. In group A, the mean α, β, γ, δ angle were 96.7°, 90.1°, 1.9°, 86.8° and 93.1°, 88.3°, 3.8°, 85.9° in group B. But we found no loosening and osteolysis at last follow up in both group. Conclusion. On the basis of our results, patients with severe varus knee(>15°) tended to have more postoperative varus mechanical alignment in conventional manual TKA group than
The use of robots in orthopaedic surgery is an
emerging field that is gaining momentum. It has the potential for significant
improvements in surgical planning, accuracy of component implantation
and patient safety. Advocates of robot-assisted systems describe
better patient outcomes through improved pre-operative planning
and enhanced execution of surgery. However, costs, limited availability,
a lack of evidence regarding the efficiency and safety of such systems
and an absence of long-term high-impact studies have restricted
the widespread implementation of these systems. We have reviewed
the literature on the efficacy, safety and current understanding of
the use of robotics in orthopaedics. Cite this article: