Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 40 - 40
1 Apr 2019
Vigdorchik J Cizmic Z Elbuluk A Jerabek SA Paprosky W Sculco PK Meere P Schwarzkopf R Mayman DJ
Full Access

Introduction. Computer-assisted hip navigation offers the potential for more accurate placement of hip components, which is important in avoiding dislocation, impingement, and edge-loading. The purpose of this study was to determine if the use of computer-assisted hip navigation reduced the rate of dislocation in patients undergoing revision THA. Methods and Materials. We retrospectively reviewed 72 patients who underwent computer-navigated revision THA [Fig. 1] between January 2015 and December 2016. Demographic variables, indication for revision, type of procedure, and postoperative complications were collected for all patients. Clinical follow-up was performed at 3 months, 1 year, and 2 years. Dislocations were defined as any episode that required closed or open reduction or a revision arthroplasty. Data are presented as percentages and was analyzed using appropriate comparative statistical tests (z-tests and independent samples t- tests). Results. All 72 patients (48% female; 52% male) were included in the final analysis [Fig. 2]. Mean age of patients undergoing revision THA was 70.4 ± 11.2 years. Mean BMI was 26.4 ± 5.2 kg/m. 2. The most common indications for revision THA were instability (31%), aseptic loosening (29%), osteolysis/eccentric wear (18%), infection (11%), and miscellaneous (11%). During revision procedure, polyethylene component was most commonly changed (46%), followed by femoral head (39%), and acetabular component (15%). At 3 months, 1 year, and final follow-up, there were no dislocations among all study patients (0%). Compared to preoperative dislocation values, there was a significant reduction in the rate of dislocation with the use of computer-assisted hip navigation (31% vs. 0%; p<0.05). Discussion. Our study demonstrates a significant reduction in the rate of dislocation following revision THA with the use of computer navigation. Although the cause of postoperative dislocation is often multifactorial, the use of computer-assisted surgery may help to curtail femoral and acetabular malalignment in revision THA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 49 - 49
1 Dec 2016
Paprosky W
Full Access

As the number of patients who have undergone total hip arthroplasty rises, the number of patients who require surgery for a failed total hip arthroplasty is also increasing. Reconstruction of the failed femoral component in revision total hip arthroplasty can be challenging from both a technical perspective and in preoperative planning. With multiple reconstructive options available, it is helpful to have a classification system which guides the surgeon in selecting the appropriate method of reconstruction. We have developed a classification of femoral deficiency and an algorithmic approach to femoral reconstruction is presented. Type I: Minimal loss of metaphyseal cancellous bone with an intact diaphysis. Often seen when conversion of a cementless femoral component without biological ingrowth surface requires revision. Type II: Extensive loss of metaphyseal cancellous bone with an intact diaphysis. Often encountered after the removal of a cemented femoral component. Type IIIA: The metaphysis is severely damaged and non-supportive with more than four centimeters of intact diaphyseal bone for distal fixation. This type of defect is commonly seen after removal of grossly loose femoral components inserted with first generation cementing techniques. Type IIIB: The metaphysis is severely damaged and non-supportive with less than four centimeters of diaphyseal bone available for distal fixation. This type of defect is often seen following failure of a cemented femoral component that was inserted with a cement restrictor and cementless femoral components associated with significant distal osteolysis. Type IV: Extensive meta-diaphyseal damage in conjunction with a widened femoral canal. The isthmus is non-supportive


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 93 - 93
1 Aug 2017
Paprosky W
Full Access

As the number of patients who have undergone total hip arthroplasty rises, the number of patients who require surgery for a failed total hip arthroplasty is also increasing. It is estimated that 183,000 total hip replacements were performed in the United States in the year 2000 and that 31,000 of these (17%) were revision procedures. Reconstruction of the failed femoral component in revision total hip arthroplasty can be challenging from a technical perspective and in pre-operative planning. With multiple reconstructive options available, it is helpful to have a classification system which guides the surgeon in selecting the appropriate method of reconstruction. A classification of femoral deficiency has been developed and an algorithmic approach to femoral reconstruction is presented. Type I:. Minimal loss of metaphyseal cancellous bone with an intact diaphysis. Often seen when conversion of a cementless femoral component without biological ingrowth surface requires revision. Type II: Extensive loss of metaphyseal cancellous bone with an intact diaphysis. Often encountered after the removal of a cemented femoral component. Type IIIA: The metaphysis is severely damaged and non-supportive with more than 4cm of intact diaphyseal bone for distal fixation. This type of defect is commonly seen after removal of grossly loose femoral components inserted with first generation cementing techniques. Type IIIB: The metaphysis is severely damaged and non-supportive with less than 4cm of diaphyseal bone available for distal fixation. This type of defect is often seen following failure of a cemented femoral component that was inserted with a cement restrictor and cementless femoral components associated with significant distal osteolysis. Type IV: Extensive meta-diaphyseal damage in conjunction with a widened femoral canal. The isthmus is non-supportive. An extensively coated, diaphyseal filling component reliable achieves successful fixation in the majority of revision femurs. The surgical technique is straightforward and we continue to use this type of device in the majority of our revision total hip arthroplasties. However, in the severely damaged femur (Type IIIB and Type IV), other reconstructive options may provide improved results. Type IIIB:. Based on the poor results obtained with a cylindrical, extensively porous coated implant (with 4 of 8 reconstructions failing), our preference is a modular, cementless, tapered stem with flutes for obtaining rotational stability. Excellent results have been reported with this type of implant and by virtue of its tapered design, excellent initial axial stability can be obtained even in femurs with a very short isthmus. Subsidence has been reported as a potential problem with this type of implant and they can be difficult to insert. However, with the addition of modularity to many systems that employ this concept of fixation, improved stability can be obtained by impaction of the femoral component as far distally as needed while then building up the proximal segment to restore appropriate leg length. Type IV:. The isthmus is completely non-supportive and the femoral canal is widened. Cementless fixation cannot be reliably used in our experience, as it is difficult to obtain adequate initial implant stability that is required for osseointegration. Reconstruction can be performed with impaction grafting if the cortical tube of the proximal femur is intact. However, this technique can be technically difficult to perform, time consuming and costly given the amount of bone graft that is often required. Although implant subsidence and peri-prosthetic fractures (both intra-operatively and post-operatively) have been associated with this technique, it can provide an excellent solution for the difficult revision femur where cementless fixation cannot be utilised. Alternatively, an allograft-prosthesis composite can be utilised for younger patients in an attempt to reconstitute bone stock and a proximal femoral replacing endoprosthesis used for more elderly patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 49 - 49
1 Apr 2017
Paprosky W
Full Access

As the number of patients who have undergone total hip arthroplasty rises, the number of patients who require surgery for a failed total hip arthroplasty is also increasing. Reconstruction of the failed femoral component in revision total hip arthroplasty can be challenging from both a technical perspective and in pre-operative planning. With multiple reconstructive options available, it is helpful to have a classification system which guides the surgeon in selecting the appropriate method of reconstruction. Type I: Minimal loss of metaphyseal cancellous bone with an intact diaphysis. Often seen when conversion of a cementless femoral component without biological ingrowth surface requires revision. Type II: Extensive loss of metaphyseal cancellous bone with an intact diaphysis. Often encountered after the removal of a cemented femoral component. Type IIIA: The metaphysis is severely damaged and non-supportive with more than 4 cm of intact diaphyseal bone for distal fixation. This type of defect is commonly seen after removal of grossly loose femoral components inserted with first generation cementing techniques. Type IIIB: The metaphysis is severely damaged and non-supportive with less than 4 cm of diaphyseal bone available for distal fixation. This type of defect is often seen following failure of a cemented femoral component that was inserted with a cement restrictor and cementless femoral components associated with significant distal osteolysis. Type IV: Extensive meta-diaphyseal damage in conjunction with a widened femoral canal. The isthmus is non-supportive. Based on our results, the following reconstructive algorithm is recommended for femoral reconstruction in revision total hip arthroplasty. An extensively coated, diaphyseal filling component reliably achieves successful fixation in the majority of revision femurs and the surgical technique is straightforward. However, in the severely damaged femur (Type IIIB and Type IV), other reconstructive options may provide improved results. Type I: Cemented or cementless fixation can be utilised. If cemented fixation is selected, great care must be taken in removing the neo-cortex often encountered to allow for appropriate cement intrusion into the remaining cancellous bone. Type II: In this cohort of patients, successful fixation was achieved using a diaphyseal fitting, extensively porous coated implant. However, as the metaphysis is supportive, a cementless implant that achieves primary fixation in the metaphysis can be utilised. Type IIIA: An extensively coated stem of adequate length is utilised to ensure that more than 4 cm of scratch fit is obtained in the diaphysis. Type IIIB: Our present preference is a modular, cementless, tapered stem with flutes for obtaining rotational stability. Type IV: Cementless fixation cannot be reliably used in our experience, as it is difficult to obtain adequate initial implant stability that is required for osseointegration. Reconstruction can be performed with impaction grafting if the cortical tube of the proximal femur is intact. However, this technique can be technically difficult to perform, time consuming and costly given the amount of bone graft that is often required. Although implant subsidence and peri-prosthetic fractures (both intra-operatively and post-operatively) have been associated with this technique, it can provide an excellent solution for the difficult revision femur where cementless fixation cannot be utilised. Alternatively, an allograft-prosthesis composite can be utilised for younger patients in an attempt to reconstitute bone stock and a proximal femoral replacing endoprosthesis used for more elderly patients


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 36 - 36
1 Nov 2015
Lewallen D
Full Access

Limb deformity is common in patients presenting for knee arthroplasty, either related to asymmetrical wear patterns from the underlying arthritic process (intra-articular malalignment) or less often major extra-articular deformity due to prior fracture malunion, childhood physical injury, old osteotomy, or developmental or metabolic disorders such as Blount's disease or hypophosphatemic rickets. Angular deformity that is above the epicondyles or below the fibular neck may not be easily correctable by adjusted bone cuts as the amount of bone resection may make soft tissue balancing impossible or may disrupt completely the collateral ligament attachments. Development of a treatment plan begins with careful assessment of the malalignment which may be mainly coronal, sagittal, rotational or some combination. Translation can also complicate the reconstruction as this has effects directly on location of the mechanical axis. Most intra-articular deformities are due to the arthritic process alone, but may occasionally be the result of intra-articular fracture, periarticular osteotomy or from prior revision surgery effects. While intra-articular deformity can almost always be managed with adjusted bone cuts it is important to have available revision type implants to enhance fixation (stems) or increase constraint when ligament balancing or ligament laxity is a problem. Extra-articular deformities may be correctable with adjusted bone cuts and altered implant positioning when the deformity is smaller, or located a longer distance from the joint. The effect of a deformity is proportional to its distance from the joint. The closer the deformity is to the joint, the greater the impact the same degree angular deformity will have. In general deformities in the plane of knee are better tolerated than sagittal plane (varus/valgus) deformity. Careful pre-operative planning is required for cases with significant extra-articular deformity with a focus on location and plane of the apex of the deformity, identification of the mechanical axis location relative to the deformed limb, distance of the deformity from the joint, and determination of the intra-articular effect on bone cuts and implant position absent osteotomy. In the course of pre-operative planning, osteotomy is suggested when there is inability to correct the mechanical axis to neutral without excessive bone cuts which compromise ligament or patellar tendon attachment sites, or alternatively when adequate adjustment of cuts will likely lead to excessive joint line obliquity which can compromise ability to balance the soft tissues. When chosen, adjunctive osteotomy can be done in one-stage at the time of TKA or the procedures can be done separately in two stages. When simultaneous with TKA, osteotomy fixation options include long stems added to the femoral (or tibial) component for intramedullary fixation, adjunctive plate and screw fixation, and antegrade (usually locked) nailing for some femoral osteotomies. Choice of fixation method is often influenced by specific deformity size location, bone quality and amount, and surgeon preference. Surgical navigation, or intra-operative x-ray imaging methods (or both) have both been used to facilitate accurate correction of deformity in these complex cases. When faced with major deformity of the femur or tibia, with careful planning combined osteotomy and TKA can result in excellent outcomes and durable implant fixation with less constraint, less bone loss, and better joint kinematics than is possible with modified TKA alone


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 105 - 105
1 May 2013
Gustke K
Full Access

Pre-operative planning in revision total knee replacement is important to simplify the surgery for the implant representative, operating room personnel and the surgeon. In revision knee arthroplasty, many implant options can be considered. This includes cemented and cementless primary and revision tibial and femoral components, with posterior cruciate retention or resection, and either with no constraint, varus/valgus constraint, or with rotating hinge bearings. One may also need femoral and tibial spacers or bulk allograft. It is important to pre-operatively determine which of these implants you may need. If I ask my implant representative to “bring everything you've got, just in case,” I will get 23 pans of instruments, 24 bins of implants composed of 347 boxes of sterile implants, and chaos for everyone. Occasionally, one may not need to revise all components, so the surgeon needs to be familiar with the implants they are revising. Consider having some or all compatible components available. Most revision knee implants can be conservatively cemented with diaphyseal engaging press-fit stems. Most importantly, pre-operative physical examination and radiographs are used to determine the status of the collateral ligaments, so that the appropriate constrained implants will be available at surgery. Radiographs will also show the amount and location of bone loss. This will determine if revision type implants, spacers or bone graft will be needed. Radiographically, one can determine the appropriate joint line position relative to the existing femoral component to simplify the surgery. Excellent pre-operative planning will minimises the need to bring in an excessive number of instruments and implants. It will help assure that the patient has a stable revision knee and simplify the surgery for all participants


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 98 - 98
1 Jan 2013
Singh A Manning W Duffy P Scott S
Full Access

Objective. To evaluate the volume of cases, causes of failure, complications in patients with a failed Thompson hemiarthroplasty. Methods. A retrospective review was undertaken between 2005–11, of all Thompson implant revised in the trust. Patients were identified by clinical coding. All case notes were reviewed. Data collection included patients demographic, time to revision, reason for revision, type of revision implant, surgical time and technique, transfusion, complications, HDU stay, mobility pre and post revision,. Results. 23 patients were identified, age 81 years (range 76–90). male to female ratio was 2:21, 11 right and 12 left hip. Mean time to failure was 50 months (1–104 m) range, mean follow up post revision surgery 26 months (3–77). Reason for revision was dislocation in 3 patients (13%), femoral loosening 5 (21%), peri-prosthetic fracture 3 (13%), Infection 6 (26%) and acetabular erosion 6 (26%). There were six infected cases in the study which was all aspirated preoperatively off which only 4 were positive. All infected cases grew an organism from intra-operative specimens. (80% cases) were coagulase negative Staphylococcus aureus. 35% only positive on enrichment cultures. 4 infected Thompsons were revised successfully with 2 stage revisions. One patient died after 1. st. stage and another was able to mobilise after the first stage with a cement spacer and refused further surgery. Mean surgical time was 3.5 hours (range 2.5–5.5). HDU stay 1.3 days (range 0–6). 6 deaths in total, 3 unrelated, 3 post operative. Complications included 1 fracture requiring revision, 1 dislocation, 1 foot drop and 4 chest infection of which two patients died from this. Conclusion. We identified a revision rate of 1.2%, complication occurred in 43% of cases with a one year mortality of 26%. Failed Thompson revision surgery is rare, challenging and patient selection is important to reduce postoperative morbidity and mortality


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 55 - 55
1 Feb 2015
Della Valle C
Full Access

Revision of the failed femoral component of a total hip arthroplasty can be challenging. Multiple reconstructive options are available and the operation itself can be particularly difficult and thus meticulous preoperative planning is required to pick the right “tool” for the case at hand. The Paprosky Femoral Classification is useful as it helps the surgeon determine what bone stock is available for fixation and hence, which type of femoral reconstruction is most appropriate. Monoblock, fully porous coated diaphyseal engaging femoral components are the “work-horse” of femoral revision. This type of a stem is used in my practice for Type 1–3a femoral defects. These stems are not used, however, in the following situations: The canal diameter is greater than 18mm; There is less than 4cm available for distal fixation in the isthmus; There is proximal femoral remodeling into retroversion. While many surgeons often believe that revision femoral components need to be “long”, they really only need to be long enough to engage 4cm of intact femoral isthmus, which is oftentimes the shortest, “primary length” fully porous coated stem. Advantages of using a shorter revision stem include: Easier surgical technique as you avoid the femoral bow, with a lower risk of fracture and under-sizing; Preserves bone stock for future revisions if required; Easier to remove if required


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 107 - 107
1 May 2016
Van Der Straeten C De Smet K
Full Access

Background and aim. Arthroplasty registries and consecutive series indicate significantly worse results of conventional metal-on-polyethylene total hip arthroplasty (THA) in patients younger than 50 years compared to older patients, with inferior clinical outcomes and 10-year survivorship ranging between 70 and 90%. At our institution, patients under 50 needing a THA receive either a metal-on-metal hip resurfacing (MoMHRA) or a ceramic-on-ceramic (CoC)THA. In order to evaluate the outcome of these options at minimum 10 years, we conducted a retrospective review of all MoMHRA and CoCTHA with more than 10 years follow-up implanted in patients under 50. Methods. From a single surgeon patients’ prospective database, we identified all consecutive THA performed before May 2005 in patients under 50. All patients are contacted by phone and asked to present for a clinical exam and patient reported outcome questionnaires, standard radiographs and metal ion measurements unless the hip arthroplasty has been revised. Complications and reasons for revision are noted. Kaplan-Meier survivorship is analysed for the whole cohort and sub-analysis is performed by type hip arthroplasty, gender, diagnosis and component size. Results. We identified 773 hip arthroplasties in 684 patients under 50 years performed by a single surgeon between 1997 and May 2005. There are 626 MoMHRA, all Birmingham Hip Resurfacings (BHR) in 561 patients (65 bilateral BHR), 135 CoCTHA in 111 patients (24 bilateral CoC) and 12 Metasul MoMTHA in 12 patients. In the BHR group, there are 392 males (70%) (42 bilateral) and 169 females (30%) (23 bilateral). Mean age at surgery was 40.8 years (median 42 years; range 16–50 years). In 33 cases, a BHR dysplasia cup was used (23 in females). Mean follow-up is 11.5 years (median 11 years; range 10–17 years). In the Metasul MoMTHA, there are 8 males and 4 females. Mean age at surgery was 40.4 years (range 20–50 years). All THA were non-cemented and head size was 28mm in all cases. Mean follow-up is 16.8 years (median 17.5 years; range 12–19 years). In the CoCTHA group, there are 71 males (64%) (17 bilateral) and 40 females (36%) (7 bilateral). Mean age at surgery was 38.2 years (median 39 years; range 16–50 years). In 21 cases, the CoCTHA was a revision of a former hip replacement: 15 THA revisions and 6 hip resurfacing revisions. Three types non-cemented acetabular components were used and 7 types femoral stems (5 non-cemented; 2 cemented). Ceramic heads and inlays were Biolox forte in 128 cases and Biolox delta in 7. Head size was 28mm in 125, 32mm in 7 and 36mm in 3. Mean follow-up is 14.9 years (median 15 years; range 10–18 years). Discussion. Patients under 50 needing a hip arthroplasty often present with more complex anatomic abnormalities or bone damage as in congenital dysplasia, avascular necrosis, traumatic osteoarthritis or rheumatic diseases. Besides, the worse results with conventional THA in young patients may be related to a higher activity level. We present the outcome and survivorship of MoMHRA and CoCTHA in patients under 50 at more than 10 years postop