The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower limb lengthening. To assess macroscopic and microscopic changes to the implants and assess differences following design modification, with identification of potential surgical, implant and patient risk factors. 15 nails were retrieved from 13 patients following lower limb lengthening. Macroscopic and microscopic surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analysed with Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy to identify corrosion.Introduction
Method
Oxidized zirconium (OxZr) is used as a ceramic surface for femoral components in total knee arthroplasty (TKA). The aim of this study was to investigate its performance by examining retrieved femoral components and their corresponding PE inserts in matched comparison with conventional chrome/cobalt/molybdenum alloy (CrCoMo). 11 retrieved posterior stabilized (PS) TKA with an OxZr femoral component were included. From a cohort of 56 retrieved TKA with CrCoMo femoral components, pairs were matched according to duration of implantation, patient age, reason for revision, and BMI. The retrieved tibial polyethylene (PE) inserts were analyzed for wear using the Hood classification. Femoral components were optically viewed at 8–32x magnification and screened for scratching, pitting, delamination, and striation. Profilometry was performed to measure surface roughness of the OxZr components using a non-contact white light profiler.Introduction
Methods
Background. Pseudotumours have been associated with metal-on-metal (MoM) hip replacements. We define it as a solid mass which may have cystic components that is neither neoplastic nor infectious in aetiology. The cause of a pseudotumour is not fully understood but could be due to excessive wear, metal hypersensitivity or due to an as-yet unknown cause. Aim. We present the
Background. Skeletal stem cells (SSCs) have been used for the treatment of osteonecrosis of the femoral head to prevent subsequent collapse. In isolation SSCs do not provide structural support but an innovative case series in Southampton, UK, has used SSCs in combination with impaction bone grafting (IBG) to improve both the biological and mechanical environment and to regenerate new bone at the necrotic site. Aims. Analysis of retrieved tissue-engineered bone as part of ongoing follow-up of this translational case series. Methods. With Proof-of-Concept established in vitro and in vivo, the use of a living bone composite of SSCs and allograft has been translated to four patients (five hips) for treatment of osteonecrosis of their femoral heads. Parallel in vitro culture of the implanted cell-graft construct was performed. Patient follow-up was by serial clinical and radiological examination. In one patient collapse occurred in both hips due to more advanced disease than was originally appreciated. This necessitated bilateral hip arthroplasty, but allowed retrieval of the femoral heads. These were analyzed for Type 1 Collagen production, bone morphology, bone density and mechanical strength by micro computed tomography (CT), histology (A/S stain, Collagen Type 1 immunostain, biorefringence) and mechanical testing. Representative sections of cortical, trabecular and tissue engineered bone were excised from the femoral heads using a diamond-tipped saw-blade and tested to failure by axial compression. Results. Parallel in vitro analysis demonstrated sustained cell growth and viability on the allograft. Three patients currently remain asymptomatic at up to three year follow-up. Histological analysis of the two retrieved femoral heads demonstrated, critically, Type 1 collagen production in the regenerated tissue as well as mature trabecular architecture, indicative of de novo tissue engineered bone. The trabecular morphology of regenerated bone was evident on CT, and this had a bone density of 1400 Grey scale units, (compared to 1200 for natural trabecular bone and 1800 for cortical bone). On axial compressive testing the regenerated bone on the left showed a 24.8% increase in compressive strength compared to ipsilateral normal trabecular bone, and a 22.9% increase on the left. Conclusions.
INTRODUCTION. Analysis of retrieved ceramic components have shown areas of localized ‘stripe wear’, which have been attributed to joint laxity and/or impingement resulting in subluxation of the head, causing wear on the edge of the cup. Studies have been conducted into the effects of mild subluxation, however few in vitro tests have looked at severe subluxation. The aim of this study was to develop a more clinically relevant subluxation protocol. MATERIALS & METHODS. Seven (Subluxation n=4; standard test n=3) of 36mm Biolox Forte (R3, Smith & Nephew) ceramic devices were tested for 0.5m cycles (mc). Two of the subluxed joints were further tested to 1 Mc. The devices were subjected to subluxation under standard testing conditions. The flex/ext was 30° and 15° respectively, with internal/external rotation of ±10°. The force was Paul type stance phase loading with a maximum load of 3 kN, and a standard ISO swing phase load of 0.3 kN at 1 Hz. The test was conducted on a ProSim hip joint wear simulator (SimSol, UK). The simulator is equipped with a novel mechanism to achieve translation of the head, to achieve subluxation. During the ISO swing phase load of 0.3kN, a controlled lateral force required for the translation of the head is applied by a cam mechanism, head retraction then occurs during heel strike. The lubricant used was new born calf serum diluted with de-ionised water to achieve average protein concentration of 20 g/l, with 0.2 wt % concentration NaN3, and changed every 250k cycles. Measurements have been taken at 0.5 & 1 mc stages. RESULTS. Linear wear measurements conducted on the subluxed joints resulted in stripe wear similar to that reported in vivo. Average length, width and depth dimensions were 25.34±1.96 mm, 8±1.60 mm and 16.95±3.87 μm (± 95% CL) respectively. Linear wear at 0.5 Mc for standard joints, were undistinguishable from the original profile. Gravimetrically, weight loss was undetectable for joints tested under standard conditions. The volume loss of the joints under subluxation was 1.9± 0.7 mm3 at 0.5 mc. Two joints tested to 1mc generated an average volume loss of 3.1±2.3 mm3. The stripe wear length, width and depth at 1 Mc were 25.30±3.33mm, 8±3.92mm and 35±17.07 μm respectiveley. DISCUSSION. The current study presents test results of a hip joint simulator with a novel subluxation mechanism to simulate severe and clinically relevant hip joint. Past techniques have had to reduce the swing phase load to achieve stripe wear patches of varying size and depth. The subluxed joints produced significantly higher volumetric wear than the standard joints. Dimensional measurements in terms of length, width and depth of wear patches of subluxed joints generated similar results to that which have been observed following