Extracellular matrix (ECM) mechanical cues guide healing in tendons. Yet, the molecular mechanisms orchestrating the healing processes remain elusive. Appropriate tissue tension is essential for tendon homeostasis and tissue health. By mapping the attainment of tensional homeostasis, we aim to understand how ECM tension regulates healing. We hypothesize that diseased tendon returns to homeostasis only after the cells reach a mechanically gated exit from wound healing. We engineered a 3D mechano-culture system to create tendon-like constructs by embedding patient-derived tendon cells into a collagen I hydrogel. Casting the hydrogel between posts anchored in silicone allowed adjusting the post stiffness. Under this static mechanical stimulation, cells remodel the (unorganized) collagen representing wound healing mechanisms. We quantified tissue-level forces using post deflection measurements. Secreted ECM was visualized by metabolic labelling with non-canonical amino acids, click chemistry and confocal microscopy. We blocked cell-mediated actin-myosin contractility using a ROCK inhibitor (Y27632) to explore the involvement of the Rho/ROCK pathway in tension
Summary Statement. We have shown that integrin mRNA expression is regulated by the application of mechanical load. This indicates that mechanical loading may modify cell sensitivity to perceive further load through increased interaction with the ECM. Introduction. Tendinopathies are a range of diseases characterised by pain and insidious degeneration. Although poorly understood, onset is often associated with physical activity. We have previously investigated the
Onset and progression of osteoarthritis (OA) is affected by a plethora of factors, including joint injury, obesity, aging, and heredity. This multi-factorial etiology obstructs our understanding of driving molecular mechanisms, which likely comprise an interplay between systemic and local factors. Next to biomechanical factors and cytokines, the course of OA appears to be altered by microenvironmental oxidative stress: cumulative evidence now suggests a prominent participation of cell signalling mediated by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master regulator of cellular protective processes, in this process. Nrf2 activation through phosphorylation of mitogen-activated protein kinases (MAPKs) regulates Nrf2 target genes, like hemeoxygenase-1 (HO-1), superoxide dismutase 2 (SOD2), or NAD(P)H Quinone Dehydrogenase 1 (NQO1) in OA chondrocytes. Maintaining high levels of HO-1 appears to be beneficial against OA development. Experimental manipulation of putative antioxidant response element (ARE) binding sites alters the in vitro expression of key transcription factors of chondrocyte markers in promoter-reporter assays. Potentially, Nrf2 is involved in autophagy, intermediary metabolism and unfolded protein response. RNAi-mediated depletion of Nrf2 further significantly abrogated anti-inflammatory and chondroprotective effects and epigenetics link transcriptional pathways of ‘N-factors’, Nrf2 and NFATs, to micro-RNA signalling. Current findings thus reveal novel mechanisms regulating extracellular matrix synthesis by chondrocytes. A further understanding of these pathways and their
Infected wounds are a major problem for patients and health care systems. The inflammation triggers expression of high levels of extracellular protease activities which degrade newly formed granulation tissue. The expression of host-derived proteases had been studied in wound healing extensively. In contrast, the contribution of bacterial proteases in impaired healing acute and chronic wounds is poorly understood as is how bacterial proteases can be blocked. In this study the expression of P. aeruginosa proteases was studied. P. aeruginosa is associated with poor healing and sufficiently common in wound infections to merit closer study. We used in vitro biofilm and planktonic culture models to analyze the culture-dependent expression of different P. aeruginosa proteases and how protease modulating polymers can inhibit activities. P. aeruginosa (PAO1, DSM 22644) was grown in LBo medium (aerated planktonic cultures) or in a biofilm culture model (dialysis tubing on LBo plates). The supernatant of planktonic or wash fluids from biofilm cultures were analyzed for protease activity. Global extracellular protease activities increased in a time- and culture condition-dependent manner (for planktonic cultures 180 ng/ml trypsin equivalent 8h, 330 ng/ml 24h, 490 ng/ml 48h; biofilm cultures 190 ng/ml trypsin equivalent 8h, 420 ng/ml 24h, 170 ng/ml 48h). Enzyme zymography revealed in biofilm cultures predominant bands at 50 kD (8h, 24h, 48h), 90 kD (24h) and > 200 kD (8h, 24h, 48h). In planktonic cultures the pattern was different 50 kD (8h), 90 kD (8h, 24h, 48h), 130 kD (24h, 48h) and > 200 kD (8h, 24h). Two different polyacrylate superabsorbers could inhibit P. aeruginosa protease activities. Favor PAC 300 blocked protease activity by 60% and SXM 9170 by 35%. These data demonstrate complex, culture-dependent expression of extracellular proteases in P. aeruginosa, a microorganism associated with poor wound healing outcomes. From a therapeutic perspective polyacrylate superabsorbers strongly inhibited global protease activities. In the next steps the protease expression pattern needs to be analyzed in P. aeruginosa wounds and correlated with healing progression.
To overcome the severely limited regenerative capacity of cartilage, bone marrow mesenchymal stromal cells (MSCs) are an attractive cell source that is accessible less invasively and in higher quantity than articular chondrocytes (ACs). However, current in vitro chondrogenic protocols induce MSCs to form transient cartilage reminiscent of growth plate cartilage that becomes hypertrophic and is remodeled into bone. In contrast, under the same conditions, ACs form stable articular-like cartilage. Developmental studies in mice have revealed that TGF-beta/BMP, Wnt, and Hedghog/PTHrP signaling are the major regulators of both, articular cartilage and endochondral bone formation. While the differential
Introduction. Cell-based therapy is needed to overcome the lacking intrinsic ability of cartilage to heal. Generating cartilage tissue from human bone marrow-derived stromal cells (MSC) is limited by up-regulation of COL10, ALP and other hypertrophy markers in vitro and calcifying cartilage at heterotopic sites in vivo. MSC hypertrophic differentiation reflects endochondral ossification, unable to maintain a stable hyaline stage, as observed by redifferentiation of articular chondrocytes (AC). Several transcription factors (TF), are held responsible for hypertrophic development. SOX9, the master regulator of chondrogenesis is also, alongside MEF2C, regulating hypertrophic chondrocyte maturation and COL10 expression. RUNX2/3 are terminal markers driving chondrocyte hypertrophy, and skeletogenesis. However, so far
Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and mineralisation respectively3 and the axonal guidance factor Sema3A. Sema3A is osteotropic, expressed by mechanically sensitive osteocytes, and an inhibitor of sensory nerve, blood vessel and immune cell invasion4. Sema3A is also differentially expressed in human OA bone5.HYPOTHESIS: Medial knee compartment overloading in varus knee malalignment patients causes dysregulation of bone derived Sema3A signalling directly linking joint biomechanics to pathology and pain. Synovial fluid obtained from 30 subjects with medial knee OA (KL grade II-IV) undergoing high tibial osteotomy surgery (HTO) was analysed by mesoscale discovery and ELISA analysis for inflammatory, neural and bone turnover markers. 11 of these patients had been previously analysed in a published patient-specific musculoskeletal model6 of gait estimating joint contact location, pressure, forces, and medial-lateral condyle load distribution in a published data set included in analyses. Data analysis was performed using Pearson's correlation matrices and principal component analyses. Principal Components (PCs) with eigenvalues greater than 1 were analysed.Abstract
OBJECTIVE
METHODS
Fragility fractures are skeletal complications associated with type 2 diabetes (T2D) causing disability, hospitalization, impaired quality of life, and increased mortality. Increased circulating sclerostin and accumulation of advanced glycation end-products (AGEs) are two potential mechanisms underlying low bone turnover and increased fracture risk. We have recently shown that T2D affects the expression of genes controlling bone formation (SOST and RUNX2) and that accumulation of AGEs is associated with impaired bone formation in T2D. We hypothesized that Wnt/B- catenin target genes are down-regulated in bone of T2D subjects as a consequence of decreased SOST and AGEs accumulation. To this end, we studied gene expression in extracts of bone samples obtained from femoral heads of 14 subjects with relatively well-controlled T2D (HbA1c 6.5±1.7%) and 21 control, non-diabetic postmenopausal women (age >65 years) undergoing hip replacement. There were no differences in age (73.2± .8 vs. 75.2±8.5 years) or BMI (27.7±5.6 vs. 29.9±5.4 kg/m2) between control and T2D groups, respectively. Expression of LEF1 mRNA was significantly lower in T2D compared to non-diabetic subjects (p=0.002), while DKK1 was not different between groups (p=0.108). Correlation analysis showed that DKK1 (r2=0.038; p=0.043) and HbA1c (r2=0.503; p=0.048) increased with age in T2D. COL1A1 mRNA trended lower in T2D compared to controls (p=0.056). Bone volume (9,333 ± 1,443 vs. 15,53 ± 2,442 mm2; p=0.048), mineralized volume (9,278 ± 1,418 vs. 15,45 ± 2,444 mm2; p=0.048) and BV/TV (0,2125 ± 0,03114 vs. 0,3719 ± 0,03196 %; p=0.002) measured by bone histomorphometry were lower in T2D compared to controls. Our data show that even in patients with relatively good glycemic control, T2D decreases expression of Wnt/B-catenin target genes andCOL1A1, associated with decreased bone density. These results may help understand the mechanisms underlying bone fragility in T2D.
TGF-β/Smad2 signaling is considered to be one of the important pathways involved in osteoarthritis (OA) and protein phosphatase magnesium-dependent 1A (PPM1A) functions as an exclusive phosphatase of Smad2 and regulates TGF-β signaling, here, we investigated the functional role of PPM1A in OA pathogenesis. PPM1A expressions in both human OA cartilage and experimental OA mice chondrocytes were analyzed immunohistochemically. Besides, the mRNA and protein expression of PPM1A induced by IL-1β treatment were also detected by q-PCR and immunofluorescence in vitro. OA was induced in PPM1A knockout (KO) mice by destabilization of the medial meniscus (DMM), and histopathological examination was performed. OA was also induced in wild-type (WT) mice, which were then treated with an intra-articular injection of a selective PPM1A inhibitor for 8 weeks. PPM1A protein expressions were increased in both human OA cartilage and experimental OA mice chondrocytes. We also found that treatment with IL-1β in mouse primary chondrocytes significantly increased both mRNA and protein expression of PPM1A in vitro. Importantly, our data showed that PPM1A deletion could substantially protect against surgically induced OA. Concretely, the average OARSI score and quantification of BV/TV of subchondral bone in KO mice were significantly lower than that in WT mice 8 weeks after DMM surgery. Besides, TUNEL staining revealed a significant decrease in apoptotic chondrocytes in PPM1A-KO mice with DMM operation. With OA induction, the rates of chondrocytes positive for Mmp-13 and Adamts-5 in KO mice were also significantly lower than those in WT mice. Moreover, compared with WT mice, the phosphorylation of Smad2 in chondrocytes was increased in KO mice underwent DMM surgery. However, articular-injection with SD-208, a selective inhibitor of TGF-β/Smad2 signaling could significantly abolish the chondroprotective phenotypes in PPM1A-KO mice. Additionally, both cartilage degeneration and subchondral bone subchondral bone sclerosis in DMM model were blunted following intra-articular injection with BC-21, a small-molecule inhibitor for PPM1A. Our study demonstrated that PPM1A inhibition attenuates OA by regulating TGF-β/Smad2 signaling. Furthermore, PPM1A is a potential target for OA treatment and BC-21 may be employed as alternative therapeutic agents for the management of OA.
Chondrocyte dysfunction is attributable to the development of osteoarthritis (OA). Deregulation of chondrogenic regulators and deleterious factors, e.g. proteinases, Wnt signalling components, and autophagy repressors lowers chondrogenic activities and ultimately deteriorates cartilage homeostasis. Emerging evidence is that epigenetic pathways, including non-coding microRNAs and histone remodelling switch on/off the expression of joint-deleterious factors. MicroRNAs reduces the expressions of mRNAs through binding to the 3'-untranslation regions of targets. The levels of microRNAs, e.g. miR-29a, miR-128a in serum, synovial fluid, synovium, and cartilage are correlated with the occurrence of OA. Mice overexpressing/deficient microRNAs of interest show minor responses to OA progression. Besides, acetylation and methylation statuses of histones regulate the factors detrimental to chondrocytes through altering the interactions between histones and promoters. Histone deacetylases and demethylases, e.g. HDAC4, SIRT1, and EZH2 contribute to the modification reactions of histones, which modulate cartilage matrix metabolism. An intricate nature is that reciprocal actions between microRNAs and histone deacetylase/demethylase are indispensable in chondrocyte survival and function. Administrations with specific inhibitor/agonists for microRNAs and histone deacetylases/demethylase enable joints to show minor responses to articular injury, which mitigate the pathogenesis of OA. This talk highlights the biological roles and therapeutic advantage of epigenetic microRNAs and histone remodelling in OA.
Bone loss around replacement prostheses may be related to the activation of mononuclear phagocytes (MNP) by prosthetic wear particles. We investigated how osteoblast-like cells were regulated by human MNP stimulated by particles of prosthetic material. Particles of titanium-6-aluminium-4-vanadium (TiAlV) stimulated MNP to release interleukin (IL)-1β, tumour necrosis factor (TNF)α, IL-6 and prostaglandin E2 (PGE2). All these mediators are implicated in regulating bone metabolism. Particle-activated MNP inhibited bone cell proliferation and stimulated release of IL-6 and PGE2. The number of cells expressing alkaline phosphatase, a marker associated with mature osteo-blastic cells, was reduced. Experiments with blocking antibodies showed that TNFα was responsible for the reduction in proliferation and the numbers of cells expressing alkaline phosphatase. By contrast, IL-1β stimulated cell proliferation and differentiation. Both IL-1β and TNFα stimulated IL-6 and PGE2release from the osteoblast-like cells. Our results suggest that particle-activated mono-nuclear phagocytes can induce a change in the balance between bone formation and resorption by a number of mechanisms.
Our aims were to describe the distribution of α-smooth muscle actin (SMA)-containing cells in Dupuytren’s tissue in vivo and to determine the effects of selected agents in regulating the expression of SMA in Dupuytren’s cells in vitro. In selected hypercellular zones of Dupuytren’s nodules up to 40% of the cells contained SMA, as shown by immunohistochemistry. A lower percentage (20%) of SMA-containing cells was found in regions of lower cellularity. A notable finding was that treatment in vitro of Dupuytren’s cells with platelet-derived growth factor significantly reduced the content of SMA. Cells from the same patients showed a significant increase in expression of SMA in response to treatment with transforming growth factor, which confirmed recent findings. In addition, interferon-γ, which has been previously used as a treatment for Dupuytren’s disease in a clinical study, had no reproducible effect on the expression of this actin isoform. Our findings are of significance for the conservative management of contractures.
Subchondral bone deterioration and osteophyte formation attributable to excessive mineralization are prominent features in the progression of end-stage knee osteoarthritis (OA). The cellular events underlying subchondral bone integrity diminishment remained elusive. This study was undertaken to characterize behavior and intracellular signaling of subchondral mesenchymal stem cells (SMSCs) and bone-marrow MSCs (BMMSCs) in OA knees isolated from patients with end-stage knee OA underwent total knee arthroplasty. The SMSCs isolated from subchondral bone explants expressed remarkable surface antigens CD73, CD105, CD90, CD166, CD44, CD29, instead of MHC II, CD45, and CD31. The cell cultures exhibited high proliferation capacity concomitant with low population doubling time compared to those of BMMSCs. Incubation in differentiation media, the SMSCs showed high osteogenic and chondrogenic lineage commitment and low adipogenic differentiation potential. They also exhibited high expression of embryonic stem cell marker OCT3/4, osteogenic factors Wnt3a, β-catenin and microRNA-29a (miR-29a) in conjunction with low expression of joint-deleterious factors HDAC4, TGF-β1, IL-1β, TNFα, and MMP3. Loss of miR-29a function lowered HDAC4 level, mineralized matrix accumulation and osteogenic marker expression of SMSCs. miR-29a reduced HDAC4 translation through targeting the 3”-untranslated region of HDAC4, which concomitantly sustained Wnt3a and β-catenin signaling. Collectively, high osteogenic lineage commitment existed in the SMSCs in OA knee microenvironment. miR-29a modulation of HDAC4 and Wnt3a signaling contributed to the increases in osteogenesis. This study shines a light no the biological role of MSCs in subchondral compartment in the end-stage OA development and highlights a new source of MSCs for joint tissue repair.
Cytokines produced within the degenerate disc induce expression of neurotrophic factors and pain related peptides which could be important in nerve ingrowth and pain sensitisation leading to low back pain. The intervertebral disc (IVD) is considered the largest aneural and avascular structure within the human body, yet during degeneration vascularisation of the IVD is seen to be accompanied by nociceptive nerves. Low back pain is a highly debilitating condition affecting around 80% of the population, 40% of which are attributed to IVD degeneration. Discogenic pain was largely thought to be a result of irritation and compression of the nerve root, yet recent data suggests that pain may be attributed to the sensitisation of sensory nerves by the synthesis of pain related peptides, calcitonin gene related peptide (CGRP) and substance P. It is known that cytokines and chemokines produced by nucleus pulposus cells elicit various effects including the production of matrix degrading enzymes, and decreased matrix molecules. Here, we investigate the hypothesis that cytokines regulate both neurotrophic factor and pain related peptide synthesis within nucleus pulposus and nerve cells which may elicit algesic effects. Real-Time PCR was performed to investigate gene expression of the neurotrophic factors NGF, BDNF, NT3 and their receptors Trk A, B and C along with Substance P and CGRP on directly extracted RNA from human NP cells and NP cells cultured in alginate for 2 weeks prior to treatment for 48hours with IL-1, IL-6 or TNFα at 0–100ng/mL. Similarly SH-SY5Y neuroblastoma cells were differentiated in retinoic acid for 7 days prior to stimulation with IL-1, IL-6 or TNFα at 0ng/mL and 10ng/mL for 48hours. Immunohistochemistry was used to localise neurotrophic factor receptors Trk A, B and C in both degenerate discs and neuronal cells. NGF expression was present in normal and degenerate disc samples, however only degenerate discs expressed the high affinity receptor TrkA. Similarly Trk B was present in 22% of normal samples increasing to 100% expression within degenerate disc samples. All cytokines increased expression of NGF in NP cells (P≤0.05). TNFα also increased BDNF significantly, whereas no significant affects were seen in NT3 expression in NP cells. Trk B expression was significantly increased by IL-1 and TNFα treatment of NP cells. Conversely Trk C was down regulated by IL-6. Substance P was significantly increased by IL-1 and TNFα treatments whilst IL-6 and TNFα increased CGRP expression in NP cells. In SH-SY5Y cells, IL-1 significantly increased BDNF whilst IL-6 and TNFα failed to induce significant differences in neurotrophic factors. All cytokines increased Trk expression in the nerve cell line; however this failed to reach significance. Immunohistochemistry confirmed the presence of Trk receptors within the neuronal cell line. Here we have demonstrated that a number of cytokines known to be up regulated during disc degeneration and disc prolapse, induce expression of various neurotrophic factors, their receptors and pain related peptides within human NP cells, as well as SH-SY5Y cells. This data suggests that the presence and production of cytokines within the degenerate disc may be responsible for nerve ingrowth and sensitisation of nerves which may result in discogenic pain.Summary
Osteoarthritis (OA) leads to articular cartilage degradation, following complex dysregulation of chondrocyte's metabolism towards a catabolic state. Mechanical and biochemical signals are involved and need to be considered to understand the condition. Regulatory network-based models (RNM) successfully simulated the biological activity of the chondrocyte and the transduction of mechanical signals at the molecular and cell levels. However, the knowledge gap between single-cell
Abstract. OBJECTIVE. Changes in subchondral bone are one of few disease characteristics to correlate with pain in OA. 1. Profound neuroplasticity and nociceptor sprouting is displayed within osteoarthritic (OA) subchondral bone and is associated with pain and pathology. 2. The cause of these neural changes remains unestablished. Correct innervation patterns are indispensable for bone growth, homeostasis, and repair. Axon guidance signalling factor, Sema3A is essential for the correct innervation patterning of bony tissues. 3. , expressed in osteocytes. 4. and known to be downregulated in bone OA mechanical loading. 5. Bioinformatic analysis has also shown Sema3a as a differentially expressed pathway by bone in human OA patients. 6. HYPOTHESIS: Pathological mechanical load and inflammation of bone causes dysregulation of Sema3A signalling leading to perturbed sensory nerve plasticity and pain. METHODS. Human KOLF2-C1 iPSC derived nociceptors were generated by TALEN-mediated insertion of transcription factors NGN2+Brn3A and modified chambers differentiation protocol to produce nociceptor-like cells. Nociceptor phenotype was confirmed by immunocytochemistry. Human Y201-MSC cells were embedded in 3D type-I collagen gels (0.05 × 106 cell/gel), in 48-well plates and silicone plates, were differentiated to osteocytes for 7 days before stimulation with IL-6 (5ng/ml) and soluble IL-6 receptor (sIL-6r (40ng/ml), IL6/sIL6r and mechanical load mimetic Yoda1 (5μM) or unstimulated (n=5/group) (48-well plates) or were mechanically loaded in silicone plates (5000μstrain, 10Hz, 3000 cycles) or not loaded (n=5/group). Conditioned media transfer was performed from osteocyte to nociceptor cultures assessed by continuous 24-hour phase contrast confocal microscopy. 24-hours after stimulation RNA was quantified by RT-qPCR (IL6) or RNAseq whole transcriptome analysis/DEseq2 analysis (Load). Protein release was quantified by ELISA. Normally distributed data with homogenous variances was analysed by two-tailed t test. RESULTS. IPSC-derived nociceptor-like cells display elongated (>5mm) dendritic projections and nociceptive molecular markers such as TUJ1, PrPH and Neun and TrkA. Sema3A signalling ligands were expressed in 100% of osteocyte cultures. Mechanical loading regulated the Sema3 pathway; Sema3A (0.4-fold, p<0.001), Sema3B (13-fold, p<0.001), Sema3C (0.4-fold, p<0.001). Under inflammatory stimulation by IL6/IL6sR, SEMA3A (7-fold, p=0.01) and receptor Plexin1 (3-fold, p=0.03) show significant
After initial hesitance and failures, with growing knowledge about advanced products and their characteristics, increasingly more medtech and also pharma companies enter the advanced therapies market. However, due to the specifics of the biology and
Abstract. Objectives. The mechanisms underlying abnormal joint mechanics are poorly understood despite it being a major risk factor for developing osteoarthritis. This study investigated the response of a 3D in vitro bone cell model to mechanical load. Methods. Human MSC cells (Y201) embedded in 3D type I collagen gels were differentiated in osteogenic media for 7-days in deformable, silicone plates. Gels were loaded once (5000 µstrain, 10Hz, 3000 cycles), RNA extracted 1-hr post load and assessed by RT-qPCR and RNAseq analysis (n=5/treatment). Cell shape and phenotype were assessed by immunocytochemistry and phalloidin staining. Data was analysed by Minitab. Results. RTqPCR revealed cells expressed markers of mature osteocytes (E11, sclerostin, DMP-1) and osteoprotegerin (OPG), alkaline phosphatase and type I collagen (COL1A1). Immunolocalisation of sclerostin and DMP-1 protein along with phalloidin staining confirmed a dendritic osteocyte phenotype. Load almost abolished sclerostin gene expression (p=0.05) and reduced E11 (2-fold p=0.03); COL1A1 was unchanged (p=0.349). Using DEseq2 analysis, of the 981 genes differentially regulated more than 2-fold at FDR p<0.05, 159 were downregulated and 821 upregulated by load. These were involved in processes important in bone biology including the inflammatory response (56 genes), ECM organisation (27), ageing (30), response to mechanical load (23), ER stress (34),
Translational models for OA have used a variety of small (mouse, rat) and large (sheep, pig) animal models to evaluate the efficacy of a specific therapy. Clinical trials based on the results of these animal models have yielded mixed results with respect to the treatment of the disease. Due to greater stringency in EU