Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 93 - 93
17 Apr 2023
Gupta P Butt S Dasari K Mallick E Nandhara G
Full Access

Hip precautions are currently practiced in three-quarters of trauma hospitals in the UK, despite national recommendations from the ‘Blue Book’ not stating it as a requirement. Valuable therapist time is utilised alongside the need for specialised equipment, which can potentially delay discharge whilst it is being arranged. Objective of this study was to explore the current practice of the use of hip precautions on discharge following hemiarthroplasty for hip fractures. To also explore whether they are necessary and to identify areas for improvement to benefit patient care overall. Online survey distributed to various Trauma and Orthopaedic Departments across the UK. Survey was available over a 4-month period, collecting 55 responses overall. Majority of responses were from trauma and orthopaedic consultants who were aware of the ‘Blue Book’ recommendations. The majority of trusts who responded did not practice hip precautions and did not feel this increased the risk of dislocations on discharge. Recommendations included integration of hip precautions in the post-op advice in coordination with the physiotherapist and information leaflets on discharge regarding hip precautions. Hip precautions were not commonly practiced, for reasons including patient compliance and the inherently stable procedure of a hemiarthroplasty compared to a THR, reducing the need for hip precautions. Hip precautions are not widely regarded as a useful practice for post-hip hemiarthroplasty, viewed as utilising more resources and increasing costs and risk due to increased hospital stay. Thus, this potentially delays discharge overall. A consistent approach should be implemented in treating patients post-hip hemiarthroplasty


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 66 - 66
17 Apr 2023
Sharp V Scott C Hing C Masieri F
Full Access

Establishing disease biomarkers has been a long-sought after goal to improve Osteoarthritis (OA) diagnosis, prognosis, clinical and pharmaceutical interventions. Given the role of the synovium in contributing to OA, a meta-analysis was performed to determine significant synovial biomarkers in human OA tissue, compared to non-OA patients. Outcomes will direct future research on marker panels for OA disease modelling in vitro/in vivo, aiding clinical research into OA disease targets. A PRISMA compliant search of databases was performed to identify potential biomarker studies analysing human, OA, synovial samples compared to non-OA/healthy participants. The Risk of Bias In Non-Randomised Studies of Interventions (ROBINS-I) tool assessed methodological quality, with outcome analysed by Grading of Recommendations Assessment, Development and Evaluation (GRADE). Meta-analyses were conducted for individual biomarkers using fixed or random effect models, as appropriate. Where three or more studies included a specific biomarker, Forest Plot comparisons were generated. 3230 studies were screened, resulting in 34 studies encompassing 25 potential biomarkers (1581 OA patients and 695 controls). Significant outcomes were identified for thirteen comparisons. Eleven favoured OA (IL-6, IL-10, IL-13, IP-10, IL-8, CCL4, CCL5, PIICP, TIMP1, Leptin and VEGF), two favoured non-OA controls (BMP-2 and HA). Notably, PIICP showed the largest effect (SMD 6.11 [3.50, 8.72], p <0.00001, I. 2. 99%), and TIMP1 resulted critically important (0.95 [0.65, 1.25], p <0.00001, I. 2. 82%). Leptin and CCL4 showed lower effects (SMD 0.81 [0.33, 1.28], p =0.0009; 0.59 [0.32, 0.86], p <0.0001, respectively). Thirteen significant synovial biomarkers showed links with OA bioprocesses including collagen turnover, inflammatory mediators and ECM components. Limitations arose due to bias risk from incomplete or missing data, publication bias of inconclusive results, and confounding factors from patient criteria. These findings suggest markers of potential clinical viability for OA diagnosis and prognosis that could be correlated with specific disease stages


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 122 - 122
1 Nov 2021
Meisel H
Full Access

AO Spine Guideline for Using Osteobiologics in Spine Degeneration project is an international collaborative initiative to identify and evaluate evidence on existing use of osteobiologics in spine degenerative diseases. It aims to formulate clinically relevant and internationally applicable guidelines ensuring evidence-based, safe and effective use of osteobiologics. The current focus is the use of osteobiologics in anterior cervical discectomy and fusion surgeries. The guideline development is planned in three phases. Phase 1- Evidence synthesis and Recommendation; Phase 2- Guideline with osteobiologics grading and Validation; Phase 3- Guideline dissemination and Development of a clinical decision support tool. The key questions formulating the guidelines for the use of osteobiologics will be addressed in a series of systematic reviews in Phase 1. The evidence synthesized by the systematic reviews will be assessed by Grading of Recommendations, Assessment, Development and Evaluations (GRADE) methodology, including expert panel discussions to formulate a recommendation. In Phase 2, osteobiologics will be graded based on evidence and the grading will be integrated with the recommendation from Phase 1, and thus formulate a guideline. The guideline will be further validated by prospective clinical studies. In the third phase, dissemination of the proposed guideline and development of a decision support tool is planned. AO-GO aims to bridge an important gap between quality of evidence and use of osteobiologics in spine fusion surgeries. With a holistic approach the guideline aims to facilitate evidence-based, patient-oriented decision-making process in clinical practice, thus stimulating further evidence-based studies regarding osteobiologics usage in spine surgeries


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 29 - 29
1 Dec 2020
Thahir A Lim JA West C Krkovic M
Full Access

Intro. Calcium sulphate (CS) is a recent alternative for antibiotic elution in infected bones and joints. The purpose of this study is to evaluate the use of antibiotic impregnated calcium sulphate (AICS) beads in the management of infected tibia and femur, with regards to patient outcomes and complication rates (including reinfection rate, remission rate and union rate). Methods. Searches of AMED, CINAHL, EMBASE, EMCARE, Medline, PubMed and Google Scholar were conducted in June 2020, with the mesh terms: “Calcium sulphate beads” or “Calcium sulfate beads” or “antibiotic beads” or “Stimulan” AND “Bone infection” or “Osteomyelitis” or “Debridement” AND “Tibia” or “Femur”. Risk of bias was assessed using the Risk of Bias in Non-randomised Studies of interventions (ROBINS-i) tool, and quality assessed via the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) criteria. Results. Out of 105 relevant papers, 11 met the inclusion criteria for data extraction. Total infection recurrence rate was 6.8% (range 3.2 – 11.9%, n = 295), which was significantly lower (p < 0.001) than that of polymethylmethacrylate (PMMA; 19.6%, n = 163). Complication rates varied. The main issue regarding AICS use was wound drainage (7.9 – 33.3%), which was considerably higher in studies involving treatment of the tibia only. Studies using PMMA did not experience this issue, but there were a few incidences of superficial pin tract infection following surgery. Conclusions. AICS was consistently effective at infection eradication, despite variation in causative organism and location of bead placement. Additionally, PMMA has many inconvenient properties. AICS is therefore an attractive alternative as an adjunct in treatment of infected tibia and femur. Wound drainage rate varied and was higher in studies regarding tibial cases alone


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 63 - 63
1 Apr 2017
Al-Azzani W Hill C Passmore C Czepulkowski A Mahon A Logan A
Full Access

Background. Patients with hand injuries frequently present to Emergency Departments. The ability of junior doctors to perform an accurate clinical assessment is crucial in initiating appropriate management. Objectives. To assess the adequacy of junior doctor hand examination skills and to establish whether further training and education is required. Methods. A double-centre study was conducted using an anonymous survey assessing hand examination completed by junior doctors (Foundation year 1 and Senior House Officer grades) working in Trauma & Orthopaedics or Emergency Departments. The survey covered all aspects of hand examination including assessment of: Flexor and Extensor tendons, Nerves (motor and sensory) and Vascular status. Surveys were marked against answers pre-agreed with a Consultant hand surgeon. Results. 32 doctors completed the survey. Tendons: 59% could accurately examine extensor digitorum, 41% extensor pollicis longus, 38% flexor digitorum profundus and 28% flexor digitorum superficialis. Nerves – Motor: 53% could accurately examine the radial nerve, 37% the ulnar nerve, 22% the median nerve and 9% the anterior interosseous nerve. Nerves – Sensory: 88% could accurately examine the radial nerve, 81% the ulnar nerve, 84% the median nerve and 18.8% digital nerves. Vascular: 93% could describe 3 methods of assessing vascularity. Conclusions. Tendon and neurological aspects of hand clinical examination were poorly executed at junior doctor level in this pragmatic survey. This highlights the need for targeted education and training to improve the accuracy of junior doctor hand injury assessment and subsequent improving patient treatment and safety. Recommendations include dedicated hand examination teaching early in Orthopaedic/A&E placements and introduction of an illustrated Hand Trauma Examination Proforma. Level of evidence. III - Evidence from case, correlation, and comparative studies


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 70 - 70
1 Aug 2012
Monda M McCarthy I Thornton M Smitham P Goldberg A
Full Access

Introduction. Knowledge of knee kinetics and kinematics contributes to our understanding of the patho-mechanics of knee pathology and rehabilitation and a mobile system for use in the clinic is desirable. We set out to assess validity and reliability of ambulatory Inertial Motion Unit (IMU) Sensors (Pegasus¯) against an established optoelectronic system (CODA¯). Pegasus¯ uses inertial sensors placed on subjects' thighs and lower leg segments to directly measure orientation of these segments with respect to gravity. CODA¯) models the position of joint centres based on tracked positions of optical markers placed on a subject, providing 3D kinematics of the subject's hips, knees and ankles in all three planes. Methods. Intra observer reliability of the Pegasus¯ system was tested on 6 volunteers (4 male; 2 female) with no previous lower limb or knee pathology. IMU's were placed on the long axis of the lateral aspects of both thighs and lower leg segments. A test re-test protocol was used with sagittal data angle collected around a standard circuit. Inter-observer reliability was tested by placement of IMU's by 5 different testers on a single volunteer. To test validity, we collected simultaneous sagittal knee angle data from Pegasus¯ and CODA¯ in two subjects. The presence of IMU's did not compromise positioning of optical markers. Results. Analysis of triplicate measurements showed that intra-observer error is +/− 5°. Inter-observer difference in measurements varied from 3° to 20° absolute values. Positional error of the Pegasus¯ IMU's was significant in comparison to CODA¯, with absolute offsets in knee angles typically of 10° to 25°. Range of motion differences between the two systems calculated as root mean square (rms) difference of the zero meaned signals were 3.8°-4.8°. Conclusion. The Pegasus¯ system is useful in ambulatory measurement of the range of knee motion in the sagittal plane. In the current configuration there was poor intra and inter-observer reliability possibly related to positional error using the Pegasus¯ system and may be due to fixation method, operator factors, body shape and variability of clothing. Recommendations have been made to the manufacturer