The aim of this study was to determine whether there is any significant
difference in temporal measurements of pain, function and rates
of re-tear for arthroscopic rotator cuff repair (RCR) patients compared
with those patients undergoing open RCR. This study compared questionnaire- and clinical examination-based
outcomes over two years or longer for two series of patients who
met the inclusion criteria: 200 open RCR and 200 arthroscopic RCR
patients. All surgery was performed by a single surgeon. Objectives
Methods
Introduction Current concepts in the treatment of degenerative disc disease include disc replacement. Disc replacement may restore height and lordosis while maintaining motion. This paper reviews the design criteria, biomechanical and biological (wear and safety) testing of the Maverick total disc arthroplasty. The surgical technique and early clinical results of the initial implantations were reviewed (Mathews HH, et al; Spine J. 2004). Methods The Maverick total disc arthroplasty is a semi-constrained, chrome cobalt metal-on-metal, ball and socket design prosthesis designed to resist shear forces. Various prosthetic sizes allow precise end plate coverage to help prevent subsidence and selective restoration of lordosis and disc height. The posterior location of the ball-and–socket articulation approximates the normal centre of rotation. The Maverick disc was subjected to axial compression, cadaveric motion, wear testing, and shock transmission studies. Early clinical outcomes were reviewed. Results Biomechanical testing resulted in no failures, cracks, loss of height or other mechanical damage after subjecting the components to 10 million loading cycles. Cadaveric testing showed maintenance of a range of motion in all planes with no statistically significant (p=.05) differences between the stiffness or