Distal radius fractures are the most common fracture of the upper extremity. Malunion of the distal radius is a common clinical problem after these injuries and frequently leads to pain, stiffness loss of strength and functional impairments. Currently, there is no consensus as to whether not the mal-aligned distal radius has an effect on carpal kinematics of the wrist. The purpose of this study was to examine the effect of dorsal angulation (DA) of the distal radius on midcarpal and radiocarpal joint kinematics, and their contributions to total wrist motion. A passive wrist motion simulator was used to test six fresh-frozen cadaveric upper extremities (age: 67 ± 17yrs). The specimens were amputated at mid humerus, leaving all wrist flexor and extensor tendons and ligamentous structures intact. Tone loads were applied to the wrist flexor and extensor tendons by pneumatic actuators via stainless steel cables. A previously developed distal radius implant was used to simulate native alignment and three DA deformity scenarios (DA 10 deg, 20 deg, and 30 deg). Specimens were rigidly mounted into the simulator with the elbow at 90 degrees of flexion, and guided through a full range of flexion and extension passive motion trials (∼5deg/sec). Carpal motion was captured using optical tracking;
Pain and disability following wrist trauma are highly prevalent, however the mechanisms underlying painare highly unknown. Recent studies in the knee have demonstrated that altered joint contact may induce changes to the subchondral bone density and associated pain following trauma, due to the vascularity of the subchondral bone. In order to examine these changes, a depth-specific imaging technique using quantitative computed tomography (QCT) has been used. We've demonstrated the utility of QCT in measuring vBMD according to static jointcontact and found differences invBMD between healthy and previously injured wrists. However, analyzing a static joint in a neutral position is not necessarily indicative of higher or lower vBMD. Therefore, the purposeof this study is to explore the relationship between subchondral vBMDand kinematic joint contact using the same imaging technique. To demonstrate the relationship between kinematic joint contact and subchondral vBMDusing QCT, we analyzed the wrists of n = 10 participants (n = 5 healthy and n = 5 with previous wrist trauma). Participantsunderwent 4DCT scans while performing flexion to extension to estimate radiocarpal (specifically the
Aim:. To assess the clinical outcomes of patients that had perilunate or lunate dislocations treated with either open or closed reduction and wiring without repair of the scapholunate interosseous ligament (SLIL). Background:. Current literature states that acute perilunate dislocations should be treated with open reduction and repair of the dorsal scapholunate ligament. This is to prevent dissociative carpal instability and potential long term degenerative arthrosis. Methods:. A retrospective review of patients who sustained a perilunate or lunate dislocation, with no associated radial or carpal fracture was conducted. All were treated by reduction and percutaneous wiring without repair of the SLIL. Patients were examined and data was collected regarding patient's pain, range of motion, grip strength, instability and return to work. All patients had a Mayo wrist score. Pre and post-surgical radiographs were assessed and the scapholunate distance, scapholunate angle and the