Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Bone & Joint Open
Vol. 3, Issue 11 | Pages 907 - 912
23 Nov 2022
Hurley RJ McCabe FJ Turley L Maguire D Lucey J Hurson CJ

Aims. The use of fluoroscopy in orthopaedic surgery creates risk of radiation exposure to surgeons. Appropriate personal protective equipment (PPE) can help mitigate this. The primary aim of this study was to assess if current radiation protection in orthopaedic trauma is safe. The secondary aims were to describe normative data of radiation exposure during common orthopaedic procedures, evaluate ways to improve any deficits in protection, and validate the use of electronic personal dosimeters (EPDs) in assessing radiation dose in orthopaedic surgery. Methods. Radiation exposure to surgeons during common orthopaedic trauma operations was prospectively assessed using EPDs and thermoluminescent dosimeters (TLDs). Normative data for each operation type were calculated and compared to recommended guidelines. Results. Current PPE appears to mitigate more than 90% of ionizing radiation in orthopaedic fluoroscopic procedures. There is a higher exposure to the inner thigh during seated procedures. EPDs provided results for individual procedures. Conclusion. PPE currently used by surgeons in orthopaedic trauma theatre adequately reduces radiation exposure to below recommended levels. Normative data per trauma case show specific anatomical areas of higher exposure, which may benefit from enhanced radiation protection. EPDs can be used to assess real-time radiation exposure in orthopaedic surgery. There may be a role in future medical wearables for orthopaedic surgeons. Cite this article: Bone Jt Open 2022;3(11):907–912


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 89 - 89
1 Aug 2020
Bourget-Murray J Kendal J Schneider P Montgomery S Kooner S Kubik J Meldrum A Kwong C Gusnowski E Thomas K Fruson L Litowski M Sridharan S You D Purnell J James M Wong M Ludwig T Abbott A Lukenchuk J Benavides B Morrison L
Full Access

Advances in orthopaedic surgery have led to minimally invasive techniques to decrease patient morbidity by minimizing surgical exposure, but also limits direct visualization. This has led to the increased use of intraoperative fluoroscopy for fracture management. Unfortunately, these procedures require the operating surgeon to stay in close proximity to the patient, thus being exposed to radiation scatter. The current National Council on Radiation Protection recommends no more than 50 mSv of radiation exposure to avoid ill-effects. Risks associated with radiation exposure include cataracts, skin, breast and thyroid cancer, and leukemia. Despite radiation protection measures, there is overwhelming evidence of radiation-related diseases in orthopaedic surgeons. The risk of developing cancer (e.g. thyroid carcinoma and breast cancer) is approximately eight times higher than in unexposed workers. Despite this knowledge, there is a paucity of evidence on radiation exposure in orthopaedic surgery residents, therefore the goal of this study is to quantify radiation exposure in orthopaedic surgery residents. We hypothesize that orthopaedic surgery residents are exposed to a significant amount of radiation throughout their training. We specifically aim to: 1) quantify the amount of radiation exposure throughout a Canadian orthopaedic residency training program and 2) determine the variability in resident radiation exposure by rotation assignment and year of training. This ongoing prospective cohort study includes all local orthopaedic surgery residents who meet eligibility criteria. Inclusion criteria: 1) adult residents in an orthopaedic surgery residency program. Exclusion criteria: 1) female residents who are pregnant, and 2) residents in a non-surgical year (i.e. leave of absence, research, Masters/PhD). After completion of informed consent, each eligible resident will wear a dosimeter to measure radiation exposure in a standardized fashion. Dosimeters will be worn on standardized lanyards underneath lead protection in their left chest pocket during all surgeries that require radiation protection. Control dosimeters will be worn on the outside of each resident's scrub cap for comparison. Dosimeter readings will then be reported on a monthly and rotational basis. All data will be collected on a pre-developed case report form. All data will be de-identified and stored on a secure electronic database (REDCap). In addition to monthly and rotational dosimeter readings, residents will also report sex, height, level of training, parental status, and age for secondary subgroup analyses. Residents will also report if they have personalized lead or other protective equipment, including lead glasses. Resident compliance with dosimeter use will be measured by self report of >80% use on operative days. Interim analysis will be performed at the 6-month time point and data collection will conclude at the 1 year time point. Data collection began in July 2018 and interim 6-month results will be available for presentation at the CORA annual meeting in June 2019. This is the first prospective study quantifying radiation exposure in Canadian orthopaedic residents and the results will provide valuable information for all Canadian orthopaedic training programs


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_32 | Pages 18 - 18
1 Sep 2013
Mounsey E Muzammil A Snowden J Trimble K
Full Access

The International Commission on Radiological Protection has established standards for radiation protection. This study aims to determine actual and perceived radiation dose and audit safe practice when using image-intensifiers in theatre. Between September 2012 and March 2013, 50 surgeons were surveyed during 39 procedures. Information collected by radiographers included the number of images the surgeons thought they used, actual number used, dose, screening time, number of people scrubbed, wearing thyroid collars and standing within 1m of the image-intensifier when in use. The primary surgeon was more likely to estimate the number of images used correctly compared to the assistant. Supervising consultants were most accurate, followed by registrars as primary surgeons, consultants as primary surgeons then assisting registrars, and lastly SHOs. Most surgeons underestimated the number of images used. 87.5% of scrubbed staff were standing within 1m of the image-intensifier during screening and 36.5% were wearing thyroid protection. Three surgeons stated they were not wearing collars as they were unavailable. We conclude that surgeons have a reasonable estimation of the x-rays used but are not undertaking simple steps to protect themselves from radiation. We plan to initiate an education program within the department and have ordered new, lightweight thyroid collars


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 28 - 28
1 Feb 2012
Devalia K Peter V Braithwaite I
Full Access

The availability and usage of portable image intensifiers has revolutionised routine orthopaedic practice. Many procedures have become simpler, easier, less invasive and less time-consuming. Extensive use of fluoroscopy can, however, result in significant radiation exposure to operating staff. An accumulated dose of 65 (Sv after multiple exposures has been reported to increase the risk of thyroid cancer many years later. Previous studies have shown that it is possible to exceed this dose during various orthopaedic procedures. Though thyroid shields are extensively available most orthopaedic surgeons do not use them. The present study was aimed at measuring the scattered dose to thyroid during DHS/IMHS for neck of femur fractures and IM nailing for long bone fractures and thereby emphasise the need for operating theatre personnel to wear a thyroid shield. A prospective study of 32 consecutive procedures was carried out. The EDD Unfors dosimeter was used to measure the tissue specific exposure dose to thyroid. Measurements were also obtained from the mobile C-arm fluoroscope unit, which calculated the total number of images and the total dose and duration of radiation for each procedure. Other factors including the grade of surgeon, the total number of theatre personnel wearing the lead gown and/or the thyroid shield and the duration of surgery were also recorded. In 32 procedures, the dose of 65 (Sv was exceeded 13 times; 8 times during DHS/IMHS and 5 times during IMN. The average thyroid dose was 142 (Sv during IMN and 55 (Sv during DHS. Only 9 of 223 (4%) theatre personnel were using a thyroid shield in spite of its availability. The results suggest that the thyroid is frequently exposed to potentially harmful radiation during these procedures. Strict inclusion of a thyroid shield as a part of routine radiation protection is recommended


Bone & Joint Open
Vol. 2, Issue 10 | Pages 893 - 899
26 Oct 2021
Ahmed M Hamilton LC

Orthopaedics has been left behind in the worldwide drive towards diversity and inclusion. In the UK, only 7% of orthopaedic consultants are female. There is growing evidence that diversity increases innovation as well as patient outcomes. This paper has reviewed the literature to identify some of the common issues affecting female surgeons in orthopaedics, and ways in which we can address them: there is a wealth of evidence documenting the differences in the journey of men and women towards a consultant role. We also look at lessons learned from research in the business sector and the military. The ‘Hidden Curriculum’ is out of date and needs to enter the 21st century: microaggressions in the workplace must be challenged; we need to consider more flexible training options and support trainees who wish to become pregnant; mentors, both male and female, are imperative to provide support for trainees. The world has changed, and we need to consider how we can improve diversity to stay relevant and effective.

Cite this article: Bone Jt Open 2021;2-10:893–899.