Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 98 - 98
1 Feb 2012
Kamineni S Lee R Sharma A Ankem H
Full Access

Radial head fractures with fragment displacement should be reduced and fixed, when classified as Mason II type injuries. We describe a method of arthroscopic fixation which is performed as a day case trauma surgery, and compare the results with a more traditional fixation approach, in a case controlled manner. We prospectively reviewed six Mason II radial head fractures which were treated using an arthroscopic reduction and fixation technique. The technique allows the fracture to be mobilised, reduced, and anatomically fixed using headless screws. All arthroscopic surgeries were conducted as day-cases. We retrospectively collected age and sex matched cases of open reduction and fixation of Mason II fractures using headless screws. The arthroscopic cases required less analgesia, shorter hospital admissions, and had fewer complications. The averaged final range of follow-up, at 1 year post-operation was 15 to 140 degrees in the arthroscopic group and 35 to 120 degrees in the open group. The Mayo Elbow Performance Score was 95/100 and 90/100 respectively. No acute complications were noted in the arthroscopic group, and a radial nerve neuropraxia [n=1], superficial wound infection [n=1], and loose screw [n=1]. Two patients of the arthroscopic group required secondary motion gaining operations [n=1 arthroscopic anterior capsulectomy for a fixed flexion contracture of 35 degrees, and n=1 loss of supination requiring and arthroscopic radial scar excision]. Three patients in the open group required secondary surgery [n=2 arthroscopic anterior capsulectomy for fixed flexion deformities, and n=1 arthroscopic anterior capsulectomy for fixed flexion deformities, and n=1 arthroscopic radial head excision for prominent screws, loss of forearm rotation, and radiocapitellar arthrosis pain]. The technique of arthroscopic fixation of Mason II radial head fractures appears to be valid, with respect to anatomical restoration of the fracture, minimal hospital admission, reduction in analgesia requirement, fewer complications, and a decreased need for secondary surgery


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 222 - 222
1 Sep 2012
Morrissey D Fat DL Katsuura Y Mullett H
Full Access

Introduction. The majority of radial head fractures may be treated successfully by conservative means and they are often considered a benign injury. However, approximately 25% of Mason type II fractures will not have a good long term result. Pain and stiffness can be a problem and this may be a significant complaint in young active patients with pain at end range of motion. Methods. A retrospective review of a single surgeon series of 62 consecutive elbow arthroscopic arthrolyses performed in 62 patients between June 2006 and Sept 2009 was performed. Pre- and post-operative ranges of motion (ROM) were assessed and recorded along with the patient's DASH score. Patients were kept in overnight and splinted in extension. Splints were removed the following day and AROM exercises were commenced with the physiotherapist. Patients were reviewed and assessed at follow up. Results. The majority of patients were male with an average age of 37 years The majority of post-traumatic cases were Mason type II fractures, who had failed conservative treatment. A statistically significant improvement in ROM of was seen following surgery for trauma related stiffness compared to other aetiologies. A improvement was also noted in DASH scores. Conclusions. In this series of elbow arthroscopic arthrolyses performed for stiffness following radial head fracture the procedure was a safe and well tolerated with significant improvements seen post-operatively. This may be an effective method of treating patients with painful stiff elbows post radial head fracture


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_4 | Pages 6 - 6
3 Mar 2023
Ramage G Poacher A Ramsden M Lewis J Robertson A Wilson C
Full Access

Introduction. Virtual fracture clinics (VFC's) aim to reduce the number of outpatient appointments while improving the clinical effectiveness and patients experience through standardisation of treatment pathways. With 4.6% of ED admissions due to trauma the VFC prevents unnecessary face to face appointments providing a cost savings benefit to the NHS. Methods. This project demonstrates the importance of efficient VFC process in reducing the burden on the fracture clinics. We completed preformed a retrospective cross-sectional study, analysing two cycles in May (n=305) and September (n=332) 2021. We reviewed all VFC referrals during this time assessing the quality of the referral, if they went on to require a face to face follow up and who the referring health care professional was. Following the cycle in May we provided ongoing education to A&E staff before re-auditing in September. Results. Between the two cycles there was an average 19% improvement in quality of the referrals, significant reduction in number of inappropriate referrals for soft tissue knee and shoulder injuries from 15.1% (n=50) to 4.5% (n=15) following our intervention. There was an 8% increase in number of fracture clinic appointments to 74.4% (n=247), primarily due to an increase number of referrals from nurse practitioners. Radial head fractures were targeted as one group that were able to be successfully managed in VFC, despite this 64% (n=27) of patients were still seen in the outpatient department following VFC referral. Conclusion. Despite the decrease in the number of inappropriate referrals, and the increase in quality of referrals following our intervention. The percentage of VFC referrals in CAVUHB is still higher than other centres in with established VFCs in England. This possibly highlights the need for further education to emergency staff around describing what injuries are appropriate for referral, specifically soft tissue injuries and radial head fractures. In order to optimise the VFC process and provide further cost savings benefits while reducing the strain on fracture clinics


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 148 - 148
1 Jul 2020
Couture A Davies J Chapleau J Laflamme G Sandman E Rouleau D
Full Access

Radial head fractures are relatively common, representing approximately one-third of all elbow fractures. Outcomes are generally inversely proportional to the amount of force involved in the mechanism of injury, with simple fractures doing better than more comminuted ones. However, the prognosis for these fractures may also be influenced by associated injuries and patient-related factors (age, body index mass, gender, tobacco habit, etc.) The purpose of this study is to evaluate which factors will affect range of motion and function in partial radial head fractures. The hypothesis is that conservative treatment yields better outcomes. This retrospective comparative cohort study included 43 adult volunteers with partial radial head fracture, a minimum one-year follow up, separated into a surgical and non-surgical group. Risk factors were: associated injury, heterotopic ossification, worker's compensation, and proximal radio-ulnar joint implication. Outcomes included radiographic range of motion measurement, demographic data, and quality of life questionnaires (PREE, Q-DASH, MEPS). Mean follow up was 3.5 years (1–7 years). Thirty patients (70%) had associated injuries with decreased elbow extension (−11°, p=0.004) and total range of motion (−14°, p=0.002) compared to the other group. Heterotopic ossification was associated with decreased elbow flexion (−9°, p=0.001) and fractures involved the proximal radio-ulnar joint in 88% of patients. Only worker's compensation was associated with worse scores. There was no difference in terms of function and outcome between patients treated nonsurgically or surgically. We found that associated injuries, worker's compensation and the presence of heterotopic ossification were the only factors correlated with a worse prognosis in this cohort of patients. Given these results, the authors reiterate the importance of being vigilant to associated injuries


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 51 - 51
1 May 2012
B. C I. A
Full Access

Background. Comminuted radial head fractures are challenging to treat with open reduction and internal fixation. Complicating matters further, radial head fractures are often associated with other elbow fractures and soft tissue injuries. Radial head arthroplasty is a favorable technique for the treatment of radial head fractures. The purpose of this study was to evaluate the functional outcomes of radial head arthroplasty using Modular Pyrocarbon radial head prosthesis in patients with unreconstructible radial head fractures. Methods. This single surgeon, single centre study retrospectively reviewed the functional and radiological outcomes of 21 consecutive patients requiring radial head arthroplasty for unreconstructible radial head fractures between July 2003 and July 2009. Patients were at least one year post-op and completed a Short-Form 36 (SF-36) questionnaire, the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire, and the Mayo Elbow Performance Index (MEPI). These patients were independently physically examined and their post-operative radiographs were independently reviewed. Results. 21 patients (9 males and 12 females) were reviewed at a minimum of 12 months follow-up. The mean DASH score was 10.8 (0-34.1), the mean SF-36 physical score was 76.9 (35-96), the mean SF-36 mental score was 83.8 (60-94), and their MEPI score was 86.4 (70-100). Patients maintained 90% of their grip strength in their injured arm when compared to their un-injured arm and had 17. o. of fixed flexion in the affected arm. Radiologically, 14 cases had some degree of post-traumatic osteoarthritis, 12 cases had evidence of heterotrophic ossification, 5 had some evidence of periprosthetic lucency and 3 of our cases were radiologically but not functionally ‘overstuffed’. Conclusion. Radial Head Arthroplasty with Pyrocarbon Radial Head Prosthesis is a safe and effective option when treating unreconstructable comminuted radial head fractures yielding good functional and radiological outcomes and remains the treatment option of choice at our institution


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 68 - 68
1 Jul 2020
Pelet S Lechasseur B Belzile E Rivard-Cloutier M
Full Access

Radial head fractures are common and mainly require a functional conservative treatment. About 20% of patients will present an unsatisfactory final functional result. There is, however, little data allowing us to predict which patients are at risk of bad evolve. This makes it difficult to optimize our therapeutic strategies in these patients. The aim of this study is to determine the personal and environmental factors that influence the functional prognosis of patients with a radial head fracture. We realized over a 1-year period a prospective observational longitudinal cohort study including 125 consecutive patients referred for a fracture of the radial head in a tertiary trauma center. We originally collected the factors believed to be prognostic indicators: age, sex, socioeconomic status, factors related to trauma or fracture, alcohol, tobacco, detection of depression scale, and financial compensation. A clinical and radiological follow-up took place at 6 weeks, 3 months, 6 months, and 1 year. The main functional measurement tool is the Mayo Elbow Performance Score (MEPS) and the Disabilities of the Arm, Shoulder and Hand (DASH). 123 patients were included in the study. 114 patients required nonsurgical management. 102 patients completed the 1-year follow-up for the main outcome (89 for the DASH score). Two patients required an unplanned surgery and were excluded from analyses. At 1 year, the average MEPS was 96.5 (range, 65–100) and 81% of subjects had an excellent result (MEPS ≥90). The most constant factor to predict an unsatisfactory functional outcome (MEPS <90 or DASH >17) is the presence of depressive symptoms at the initial time of the study (P = 0.03 and P = 0.0009, respectively). This factor is present throughout the follow-up. Other observed factors include a higher socioeconomic status (P = 0.009), the presence of financial compensation (P = 0.027), and a high-velocity trauma (P = 0.04). The severity of the fracture, advanced age, female sex, and the nature of the treatment does not influence the result at 1 year. No factor has been associated with a reduction in range of motion. Most of the radial head fractures heal successfully. We identified for the first time, with a valid tool, the presence of depressive symptoms at the time of the fracture as a significant factor for an unsatisfactory functional result. Early detection is simple and fast and would allow patients at risk to adopt complementary strategies to optimize the result


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 48 - 48
1 May 2012
M. A D. D W. I
Full Access

Background. Fractures of the radial head result from an axial force that causes impaction against the capitellum. Associated lesions of the capitellum in this pattern of injury have been previously reported in the orthopaedic literature as an uncommon occurrence. Methods. All patients presenting to the clinics of the senior surgeon between 1998-2008 with radial head fractures requiring surgery were included. Data collected included demographics (age, gender, side of injury), mechanism, timing of injury and injury type (Mason classification). Intraoperative findings including evidence of union, capitellar injury, associated joint dislocation, collateral ligament injury, and any other fractures around the elbow were documented. Results. We reviewed 109 consecutive patients presenting with radial head fractures. 67% of the patients were found to have the PLUCCAR lesion, a capitellar slither of cartilage impacted in the radial fracture. Of these, 76.9% of patients with a Mason I injury had a PLUCCAR lesion, 76.7% of patients with Mason II injury had a PLUCCAR lesion, and only 33.3% of patients with Mason III lesion had a PLUCCAR lesion. 13 patients had a pre-existing non-union, 84% of whom had a PLUCCAR lesion. 19 patients were found to have a malunion, 84% of whom were found to have the PLUCCAR lesion. Conclusion. Injury to the capitellum is commonly associated with radial head fracture. We term impaction of a capitellar fragment in the radius a PLUCCAR lesion. There is an increased incidence of this injury in less comminuted radial head fractures, and in patients presenting with non union or malunion of a radial head fracture


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 153 - 153
1 Sep 2012
Faber KJ Pike JM Grewal R Athwal GS King GJ
Full Access

Purpose. Limited information is available regarding the functional outcomes of radial head fractures managed with open reduction and internal fixation (ORIF). The purpose of this study was to determine the functional outcomes of radial head fractures treated with ORIF. Method. Fifty-two patients, with a mean age of 4412 years, who were treated with radial head ORIF were evaluated at a mean of 4.42.4 years. Thirty were isolated radial head fractures (Group A), 13 (Group B) were associated with a complex fracture-dislocation (terrible triad variants), and 5 (Group C) were associated with a proximal ulnar fracture (Monteggia/trans-olecranon variants). Fourty-four were partial articular fractures and 8 were complete articular fractures. Outcomes were assessed with physical and radiographic examination, and validated self-reported questionnaires. Results. The average PREE score (Patient Rated Elbow Evaluation) for Groups A, B, and C were 7.613.1, 12.313.4, and 108.5, respectively. The average MEPI (Mayo Elbow Performance Score) for Groups A, B, and C were 8913, 8511, and 918, respectively. For Groups A, B, and C respectively, the prevalence of radiographic radiocapitellar arthritis was 30%, 46%, and 20%. The average flexion/extension arc for Groups A, B, and C were 7 to 132, 6 to 134, and 10 to 132 respectively. Secondary surgery was performed in 17% of cases, most commonly for decreased motion. Three comminuted fractures failed ORIF and required conversion to radial head arthroplasty. Conclusion. Patients with radial head fractures, including those associated with complex fracture-dislocations, can achieve excellent functional outcomes with low self reported pain and disability when treated with ORIF, despite radiographic evidence of mild post-traumatic arthritis


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_23 | Pages 14 - 14
1 May 2013
Hassan S Salar O Lau K Espag M Cresswell T Clark DI
Full Access

Purpose. Assess and report the functional and post-operative outcomes of complex acute radial head fractures with elbow instability treated by arthroplasty using an uncemented modular anatomic prosthesis. Methods. Over a 3-year period (2007–2010), 21 patients (mean age 51.9 years) were treated primarily with modular radial head arthroplasty (mean follow up of 27.1 months). Data was collected retrospectively using clinical notes, operation documentation and prospectively using validated scoring systems namely the Oxford Elbow Index, Quick DASH and the Mayo Elbow Performance Score. Associated elbow fractures, ligamentous injury and short to mid term post-operative outcomes including radiographic assessment were recorded. Results. The mean Oxford Elbow Score was 34.80 (range 20–48). The mean Quick Dash score was 26.01 (range 0–68.2). The Mayo Performance score showed 6 scored excellent, 5 scored good, 3 scored fair and 2 scored poor. Regarding post-operative outcomes, 1 patient had a radial head dislocation, 1 patient had prosthesis removal for ongoing pain and 1 patient had a total elbow replacement due to associated proximal ulna fracture non-union. 11 patients had an associated ligamentous injury of which 6 had an associated coronoid fracture. Of note, 7 patient's radiographs showed early signs of implant loosening; this was mainly asymptomatic. Conclusions. With regard to complex radial head fractures with elbow instability, patient outcome measures showed good functionality and overall patient satisfaction despite radiographic evidence of loosening. Post-operative complication rates were low. These findings support the use of this radial head prosthesis in arthoplasty surgery for the treatment of complex acute radial head fractures with elbow instability


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 88 - 88
1 Feb 2017
Levy J Formaini N Kurowicki J
Full Access

Background. Radial head arthroplasty (RHA) is a popular method of treatment for complex fractures of the radial head. The purpose of this study was to investigate patient outcomes and radiographic findings associated with a single anatomical monopolar press-fit radial head system commonly used for the treatment of radial head fractures. Methods. A retrospective review of prospectively collected data was performed for a consecutive series of patients treated with RHA between November 2007 and April 2014. Patients with a minimum of 12-month follow-up were included. Most recent radiographs were evaluated for loosening, stress shielding, and instability. Post-operative motion and outcomes were reported at most-recent follow-up. Results. At an average follow-up of 30 months, 7 of the 17 patients (41%) demonstrated radiographic loosening. Six of the 10 patients (60%) without loosening demonstrated stress shielding (average 6mm). Functional outcome scores included a mean ASES of 74, MEPS of 87, VAS Pain of 1, VAS Function of 8 and SANE of 79. Average flexion-extension arc was 13°–138°, and average pronation-supination was 77°–76° (Figure 1). Of the patients with radiographic loosening, 86% had undergone RHA with an associated ligamentous injury of the elbow. Satisfaction among patients was high, as no patient reported an unsatisfactory outcome. Conclusions. The use of an anatomic, press-fit monopolar RHA in the management of acute complex radial head fractures has yielded excellent clinical outcomes despite high rates of radiographic loosening and stress shielding. Press-fit RHA in the setting of ligamentous injury warrants further investigation due to a high rate of implant loosening observed


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 34 - 34
1 Feb 2012
Gupta A Kamineni S Ankem H
Full Access

To study the surgical outcome of multi-fragmentary, un-reconstructable radial head fractures managed acutely by a radial head prosthetic replacement, we retrospectively reviewed nineteen radial head fractures that were treated acutely with a radial head replacement, over a four-year period in three district general hospitals. Nineteen patients were clinically and radiologically assessed for this study. Functional assessment was performed with the Mayo elbow performance score (MEPS). No patient achieved full functional range of motion. The average range of flexion was 110° (range 80° to 120°), average extension deficit of 35° (range 30° to 45°), average pronation was 35° (range 0° to 65°), and average supination was 50° (range 30° to 85°). Complications included implant removal due to loosening (n=1), elbow stiffness (n=2), and instability (n=1), the latter case requiring a revision of the radial head prosthesis. Some degree of persistent discomfort was noticed in all cases. Five patients were tolerant of the final functional outcome. The average Mayo elbow score was 68/100 (range 55 to 80). One patient had an intra-operative fracture of the radial metaphysis during insertion of the implant. Conclusions. Radial head replacement in general orthopaedic, low volume practice failed to achieve satisfactory results. Contrary to popular belief, it is a technically demanding operation, for which surveillance should be continued for a minimum of one year. Strict indications for prosthetic replacement should be followed and implant selection has yet to be proven to make a significant positive contribution. Our review highlights the need for a stricter adherence to indications; surgery should not be under-estimated and devolved to trainees, and our understanding of the radial axis of the elbow and forearm remains relatively rudimentary


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 112 - 112
1 May 2012
Hughes J
Full Access

The causes of a stiff elbow are numerous including: post-traumatic elbow, burns, head injury, osteoarthritis, inflammatory joint disease and congenital. Types of stiffness include: loss of elbow flexion, loss of elbow extension and loss of forearm rotation. All three have different prognoses in terms of the timing of surgery and the likelihood of restoration of function. Contractures can be classified into extrinsic and intrinsic (all intrinsic develop some extrinsic component). Functional impairment can be assessed medicolegally; however, in clinical practice the patient puts an individual value on the arc of motion. Objectively most functions can be undertaken with an arc of 30 to 130 degrees. The commonest cause of a Post-traumatic Stiff elbow is a radial head fracture or a complex fracture dislocation. Risk factors for stiffness include length of immobilisation, associated fracture with dislocation, intra-articular derangement, delayed surgical treatment, associated head injury, heterotopic ossification. Early restoration of bony columns and joint stability to allow early mobilisation reduces incidence of joint stiffness. Heterotopic ossification (HO) is common in fracture dislocation of the elbow. Neural Axis trauma alone causes HO in elbows in 5%. However, combined neural trauma and elbow trauma the incidence is 89%. Stiffness due to thermal injury is usually related to the degree rather than the site. The majority of patients have greater than 20% total body area involved. Extrinsic contractures are usually managed with a sequential release of soft tissues commencing with a capsular excision (retaining LCL/MCL), posterior bundle of the MCL +/− ulna nerve decompression (if there is loss of flexion to 100 degrees). This reliably achieved via a posterior incision, a lateral column exposure +/− ulna nerve mobilisation. A medial column exposure is a viable alternative. Arthroscopic capsular release although associated with a quicker easier rehabilitation is associated with increased neural injury. Timing of release is specific to the type of contracture, i.e. flexion contractures after approx. six months, extension contractures ASAP but after four months, loss of forearm rotation less 6 to 24 months. The use of Hinged Elbow Fixators is increasing. The indications include reconstructions that require protection whilst allowing early movement, persistent instability or recurrent/late instability or interposition arthroplasty. Post-operative rehabilitation requires good analgesia, joint stability and early movement. The role of CPM is often helpful but still being evaluated


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 523 - 523
1 Dec 2013
Latta L Sawardeker P Kam C Milne E Ouellette E
Full Access

INTRODUCTION:. Radial head arthroplasty is a reliable procedure with good functional outcomes when faced with irreparable radial head fractures. Since the first attempt at arthroplasty by Speed in 1941, there have been a variety of different designs created for radial head prostheses. There has been considerable recent interest in bipolar radial head components. However, to date, there have been few biomechanical studies comparing bipolar components to their monopolar counterparts. We examine the effects of alteration of axial length of the radial head prosthesis and force conveyed at the radiocapitellar joint in a head-to-head comparison of bipolar implants to monopolar implants. METHODS:. Sixteen fresh-frozen, sided cadaveric arms were utilized. Radial heads were resected and either a monopolar, rigid, metal radial head prosthesis (Solar, Stryker, Mahwah, NJ) was implanted or a bipolar metal prosthesis used (Katalyst, Integra, Plainsboro, NJ). Adjustments of radial head length were made in 2 mm increments using radiolucent washers to create an understuffed (−2), neutral (0), and overstuffed (+2, +4) effect, see Fig. 1. Forearms were cyclically loaded in compression from 13N to 130N with the forearm in neutral. Radiocapitellar forces were measured using Tekscan (Tekscan, Inc., Boston, MA) pressure sensors with radial head length set at −2 mm, 0, +2 mm and +4 mm and comparisons were made with the neutral (0) radial head, see Fig. 2. Multivariant ANOVA with Tukey's HSD correction was used for statistical analysis. RESULTS:. Radiocapitellar average peak pressures using monopolar and bipolar radial heads in arms that were understuffed (−2 mm), were 0.54 and 0.39 MPa, respectively; neutral (0 mm), 0.68 and 0.36 MPa; and overstuffed (+2 mm), 0.44 and 0.39 MPa; (+4 mm), 0.48 and 0.40 MPa, respectively. There was a noticeable stepwise increase in force transmitted with progressive radial head lengthening regardless of implant design. Radiocapitellar forces were almost 1.5 times greater with monopolar radial head overstuffing (+4) compared to neutral (0) while they essentially doubled with bipolar radial head overstuffing (+4) compared to neutral (0) (p < 0.01). The average change in measured values for the monopolar prostheses compared to the bipolar prostheses in the same arm are shown in Figure 2. DISCUSSION:. Progressive radial head lengthening regardless of implant design was associated with a stepwise increase in radiocapitellar joint force. Radiocapitellar forces where notably lower with the bipolar radial head when compared to their monopolar counterparts. This may in part be due to the bipolar design which allows for increased play at the radiocapitellar junction., see Fig. 3. Significance: Sizing and selection of the radial head implant plays a critical role in restoring native radiocapitellar loads and may prevent accelerated wear at the radiocapitellar joint after radial head arthroplasty. Figure 1 – Radial head length was controlled by applying 2 mm thick washers beneath the head, shown here with a monopolar prosthesis. Figure 2 – The bipolar radial head transmitted less force, greater contact area and lower peak pressures than with monopolar prostheses. Figure 3 – This radiographic image shows the potential for the bipolar radial head implant to realign to the joint under load