The rotator cuff tendinopathy is one of the most common shoulder problems leading to full-thickness rotator cuff tendon tear and, eventually, to degenerative arthritis. Recent research on rotator cuff tendon degeneration has focused on its relationship to cell death. The types of cell death known to be associated with rotator cuff tendon degeneration are apoptosis, necrosis, and autophagic cell death. The increased incidence of cell death in degenerative tendon tissue may affect the rates of collagen synthesis and repair, possibly weakening tendon tissue and increasing the risk of tendon rupture. The biomolecular mechanisms of the degenerative changes leading to apoptotic cell death in rotator cuff tenofibroblasts have been identified as oxidative-stress-related cascade mechanisms. Furthermore, apoptosis, necrosis, and autophagic cell death are all known to be mediated by oxidative stress, a condition in which
Invertebral disc degeneration (IDD) is a degenerative disease involving a variety of musculoskeletal and spinal disorders such as lower back pain (LBP). Secretome derived from mesenchymal stem cells (MSCs) have exerted beneficial effect on tissue regeneration. In this study, the goal was to investigate the paracrine and the anti-inflammatory effects of secretome from interleukin IL1β preconditioned Bone Marrow MSCs (BMSCs) on human nucleus pulposus cells (hNPCs) in a 3D in vitro model. Secretome was collected from BMSCs (BMSCs-sec) after preconditioning with 10 ng/mL IL1β. hNPCs were isolated from surgical specimens, culture expanded in vitro, encapsulated in alginate beads and treated with: growth medium; IL1β 10 ng/mL; IL1β 10 ng/mL for 24 hours and then BMSCs-sec. We examined: i) cell proliferation and viability (flow cytometry), ii) nitrite production (Griess assay) and
Introduction and Objective. Hyaluronic acid (HA) is an effective option for the treatment of osteoarthritis (OA) patients due to several properties such as normalization of the mechanical and rheological properties of the synovial fluid and amelioration of OA symptoms and joints function by promoting cartilage nutrition. Since OA progression is also significantly related to oxidative stress and reactive oxygen species (ROS), sodium succinate (SS) is envisioned as a promising compound for cartilage treatment by providing antioxidant defense able to normalize intracellular metabolism and tissue respiration via mitochondrial mechanism of action. The scope of this study was to investigate on an in vitro inflammatory model the efficacy of Diart. ®. product, a combination of HA and SS. Materials and Methods. Donor-matched chondrocytes and synoviocytes were obtained from KL 3–4 OA patients undergoing total knee replacement. At passage 4, inflammation was promoted with 1 ng/ml IL-1B for 48 hours in absence and presence of Diart. ®. at 1:3 dilution rate. Nitric oxide (NO) from cell culture supernatant was measured by Griess reaction. Mitochondrial and cytoplasmatic
Objectives. Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co. 2+. ) during wear of MOM hip implants, but the toxic mechanism is not clear. Methods. To evaluate the protective effect of zinc ions (Zn. 2+. ), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn. 2+. for four hours. The cells were then exposed to different concentrations of CoNPs and Co. 2+. for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured. Results. CoNPs and Co. 2+. can induce the increase of
Objectives. The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy. Methods. Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined. Results. In tenocyte cultures grown under high glucose conditions, gene expressions of NOX1, MMP-2, TIMP-1 and -2 after 48 and 72 hours, NOX4 after 48 hours and IL-6, type III collagen and TIMP-2 after 72 hours were significantly higher than those in control cultures grown under control glucose conditions. Type I collagen expression was significantly lower after 72 hours.
Objectives. We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. Materials and Methods. We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells
The use of mesenchymal stromal cells (MSCs) in regenerative medicine and tissue engineering is well established, given their properties of self-renewal and differentiation. However, several studies have shown that these properties diminish with age, and understanding the pathways involved are important to provide regenerative therapies in an ageing population. In this PRISMA systematic review, we investigated the effects of chronological donor ageing on the senescence of MSCs. We identified 3023 studies after searching four databases including PubMed, Web of Science, Cochrane, and Medline. Nine studies met the inclusion and exclusion criteria and were included in the final analyses. These studies showed an increase in the expression of p21, p53, p16,
Stem cells are known to have low levels of intracellular reactive oxygen species (ROS) and high levels of glutathione.
Summary Statement. A novel transcutaneous CO. 2. therapy significantly enhanced the antitumor effectiveness of X-ray irradiation in human MFH xenografts The results strongly suggest that transcutaneous CO. 2. therapy could be a novel therapeutic tool for overcoming radioresistance in human malignancies. Introduction. Hypoxia contributes to tumor radioresistance. In the presence of oxygen, reactive oxygen species (ROS) play crucial roles in cellular apoptosis to irradiation. We previously showed that a novel transcutaneous application of CO. 2. can improve hypoxia and that it induces apoptosis and decreases the expression of HIF-1α in sarcoma. Therefore, we hypothesised that a transcutaneous application of CO. 2. may increase radiosensitivity in sarcoma by improvement of hypoxic condition and increasing
Introduction and Objective. Found in bone-associated prosthesis, Cutibacterium acnes (C. acnes) is isolated in more than 50% of osteoarticular prosthesis infections, particularly those involving shoulder prostheses. Ongoing controversies exist concerning the origin of C. acnes infection. Few reports construct a reasonable hypothesis about probable contaminant displaced from the superficial skin into the surgical wound. Indeed, despite strict aseptic procedures, transecting the sebaceous glands after incision might result in C. acnes leakage into the surgical wound. More recently, the presence of commensal C. acnes in deep intra-articular tissues was reported. C. acnes was thus detected in the intracellular compartment of macrophages and stromal cells in 62.5% of the tested patients who did not undergo skin penetration. Among bone stromal cells, mesenchymal stem cells (MSCs) are predominantly found in bone marrow and periosteum. MSCs are the source of osteogenic lines of cells capable of forming bone matter. In this study, the pathogenicity of C. acnes in bone repair context was investigated. Materials and Methods. Human bone marrow derived MSCs were challenged with C. acnes clinical strains harvested from non-infected bone site (Cb). The behaviour of Cb strain was compared to C. acnes took from orthopaedic implant-associated infection (Ci). The infective capabilities of both strains was determined following gentamicin-based antibiotic protection assay. The morphology and ultrastructural analysis of infected MSCs was performed respectively through CLSM pictures of Phalloidin. ®. stained MSCs cytoskeleton and DAPI labelled Cb, and transmission and scanning electron microscopies. The virulence of intracellular Ci and Cb (Ci-MSCs and Cb-MSCs) was investigated by biofilm formation on non-living bone materials; and the immunomodulatory response of infected MSCs was investigated (PGE-2 and IDO secretion detected by ELISA). Bone cells (osteoblasts and PMA differentiated macrophages) were then challenged with Cb-MSCs and Ci-MSCs. Intracellular accumulation of
This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.Aims
Methods
Healthcare associated infections (HAI) pose a major threat to patients admitted to hospitals, and infection rates following orthopaedic arthroplasty surgery are as high as 4%, while the infection rates are even higher after revision surgery. 405 nm High-Intensity Narrow Spectrum (HINS) light has been proven to reduce environmental contamination in hospital isolation rooms, and there is potential to develop this technology for application in orthopaedic surgery. Cultured rat osteoblasts were exposed to 405 nm light to investigate if bactericidal doses of light could be used safely in the presence of mammalian cells. Cell viability was measured by MTT reduction and microscopy techniques, function by alkaline phosphatase activity, and proliferation by the BrdU assay. Exposures of up to a dose of 36 J/cm. 2. had no significant effect on osteoblast cell viability, whilst exposure of a variety of clinically relevant bacteria, to 36 J/cm. 2. resulted in up to 100% kill. Exposure to a higher dose of 54 J/cm. 2. significantly affected the osteoblast cell viability, indicating dose dependency. Work also demonstrated that 405 nm light exposure induces reactive oxygen species (ROS) production in both mammalian and bacterial cells, as shown by fluorescence generated from 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate dye. The mammalian cells were significantly protected from dying at 54 J/cm. 2. by catalase, which detoxifies H. 2. O. 2. Bacterial cells were significantly protected by sodium pyruvate (H. 2. O. 2. scavenger) and by a combination of free radical scavengers (sodium pyruvate, dimethyl thiourea (·OH scavenger), catalase) at 162 and 324 J/cm. 2. Thus the cytotoxic mechanism of 405 nm light in mammalian cells and bacteria is likely oxidative stress involving predominantly H. 2. O. 2. generation, with other
Osteosarcoma (OS) is a highly malignant primary tumor frequently occurring in children and adolescents. The mainstay of therapy is neoadjuvant chemotherapy and surgical removal of the lesion yielding a 50–70% of 5-year survival rate. Unfortunately, chemotherapy is currently unable to induce complete tumor necrosis leaving residual tumor cells free to metastasize or recidivate, thus resulting in a 30% mortality. The major limitation in those patients is the development of multidrug resistance (MDR) and the low water solubility of drugs such as Paclitaxel (PTX) that is in fact not included in the majority of chemotherapy protocols for OS treatment. We thus hypothesized to prevent the emergence of MDR and obtain significant tumor reduction, by engineering innovative nanoparticles (NPs) able to vehiculate the PTX and induce a dual synergic action: the cytostatic effect of PTX and the cytotoxicity generated by reactive oxygen species produced from light triggered photoactivation (PDT) of Chlorin e6 photosensitizer. To further improve the efficacy and reduce the side effects of NPs systemic administration, Mesenchymal Stromal Cells (MSC) are used as a “Trojan horse” to deliver the NPs directly to tumor cells, taking advantage of MSC ability to selectively recognize and efficiently engraft in OS tumor stroma. HSA were conjugated with photosensitizer Ce6 and the functionalized protein was used to produce PTX loaded nanoparticles through desolvation technique and drug-induced protein self-assembly (PTX-Ce6@HSA NP). Human MSC lines, isolated from the Bone marrow (BM) of different donors, were then loaded with different dosages of nanoparticles and their ability to internalize and transport the NPs, migrate and induce cytotoxic
The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms. Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment.Objectives
Methods
Triamcinolone acetonide (TA) is widely used for the treatment of rotator cuff injury because of its anti-inflammatory properties. However, TA can also produce deleterious effects such as tendon degeneration or rupture. These harmful effects could be prevented by the addition of platelet-rich plasma (PRP), however, the anti-inflammatory and anti-degenerative effects of the combined use of TA and PRP have not yet been made clear. The objective of this study was to determine how the combination of TA and PRP might influence the inflammation and degeneration of the rotator cuff by examining rotator cuff-derived cells induced by interleukin (IL)-1ß. Rotator cuff-derived cells were seeded under inflammatory stimulation conditions (with serum-free medium with 1 ng/ml IL-1ß for three hours), and then cultured in different media: serum-free (control group), serum-free + TA (0.1mg/ml) (TA group), serum-free + 10% PRP (PRP group), and serum-free + TA (0.1mg/ml) + 10% PRP (TA+PRP group). Cell morphology, cell viability, and expression of inflammatory and degenerative mediators were assessed.Objectives
Methods
In an attempt to increase the life of cementless prostheses, an hydroxyapatite-coated implant which releases a bisphosphonate has been suggested as a drug-delivery system. Our Our findings demonstrated that zoledronate did not impair the proliferation of human osteoblasts when used at concentrations below 1 μ A concentration of 0.01% of titanium particles did not impair the proliferation of either cell line. Zoledronate affected the alkaline phosphatase activity of murine osteoblasts through a chelation phenomenon. The presence of titanium particles strongly decreased the alkaline phosphatase activity of murine osteoblasts. We did not detect any synergic effect of zoledronate and titanium particles on the behaviour of both human and murine osteoblasts.