Introduction. Particle-induced oxidative stress in cells is a unifying factor that determines toxicity and carcinogenicity potential in biomaterials. A previous study by Bladen et al. showed the production of significant levels of reactive oxygen species (ROS) following the stimulation of phagocytes by UHMWPE and CoCr wear debris [1]. Latest generation bearing materials such as silicon nitride also need to be tested for potential generation of
Implant-related infection (IRI) is closely related to the local immunity of peri-implant tissues. The generation of reactive oxygen species (ROS) in activated macrophages plays a prominent role in the innate immune response. In previous studies, we indicated that implant wear particles promote endotoxin tolerance by decreasing the release of proinflammatory cytokines. However, it is unclear whether
The purpose of this study was to evaluate whether AGEs induce annulus fibrosus (AF) cell apoptosis and to further explore the mechanism by which this process occurs. AF cells were treated with various concentrations of AGEs for 3 days. Cell proliferation was measured by the Cell Counting Kit-8 (CCK-8) and EdU incorporation assays. Cell apoptosis was examined by the Annexin V/PI apoptosis detection kit and Hoechst 33342. The expression of apoptosis-related proteins, including Bax, Bcl-2, cytochrome c, caspase-3 and caspase-9, was detected by western blotting. In addition, Bax and Bcl-2 mRNA expression levels were detected by RT-PCR. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) production of AF cell were examined by JC-1 staining and DCFH-DA fluorescent probes, respectively. Our results indicated that AGEs had inhibitory effects on AF cell proliferation and induced AF cell apoptosis. The molecular data showed that AGEs significantly up-regulated Bax expression and inhibited Bcl-2 expression. In addition, AGEs increased the release of cytochrome c into the cytosol and enhanced caspase-9 and caspase-3 activation. Moreover, treatment with AGEs resulted in a decrease in MMP and the accumulation of intracellular
The purpose of this study is to analyze the demographic and microbiological variables of acute ankle infections posterior to ankle osteosynthesis and to determine the different characteristics of patients with A multicenter retrospective observational study (4 national hospitals) of acute post osteosynthesis infections of ankle fracture operated between 2015 and 2018 was implemented. The demographic and microbiological variables relating to the surgical intervention and the antibiotic treatment performed were collected. A descriptive assessment of all the variables and a univariate comparison between patients with Aim
Method
Introduction. Periprosthetic joint infection (PJI) and particle-induced osteolysis are closely related to peri-implant local immunity and macrophage function. We previously demonstrated that titanium particles attenuate the immune response of macrophages caused by chronic inflammation [1]. In a separate study, we have determined that UHMWPE wear particles containing vitamin E (VE) induce less osteolysis compared to HXL UHMWPE wear particles in a murine calvarium model [2]. For this study we hypothesized that macrophages exposed to HXL UHMWPE particles containing VE would better maintain their ability to respond to S. aureus compared to HXL UHMWPE without VE. Methods. A gamma-sterilized, HXL UHMWPE tibial bearing containing VE (E1, Biomet, “VE-PE”) and 100kGy irradiated and melted UHMWPE (“CISM 100”) were cryomilled to particles by Bioengineering Solutions (Oak Park, IL). In the first in vitro study, RAW 264.7 mouse macrophages were exposed (inverted co-culture) to either VE-PE particles or CISM100 particles and lipopolysaccharide (LPS) for 1–7 days. Macrophage viability was measured using a cell counting kit (CCK-8). Control group with no particles and a LPS group were also included. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to determine macrophage apoptosis rate in response to particle exposure over time. In the second study, macrophages were exposed to VE-PE or CISM100 particles for 48h, then exposed to LPS for 30 min. Subsequently, reactive oxygen species (ROS) generation and extracellular regulated protein kinase (ERK) phosphorylation were measured. In a third study, after exposure to particles for 48h, fatigued macrophages were co-cultured with bioluminescent S. aureus strain Xen29 for 3h and 6h. Bioluminescence signal was determined to measure the total amount of bacteria. Bacterial live/dead staining and optical density at 600 nm (OD 600) were also performed to determine S. aureus viability. Statistical analysis was performed using one-way or two-way ANOVA with a post hoc examination. *indicates p<0.05. Results. CISM100 particles significantly decreased macrophage viability at day 5 and day 7 (p<0.05, Fig. 1A), while the viability of macrophages exposed to VE-PE particles was similar to controls (macrophages not exposed to particles). After 48h, macrophages exposed to VE-PE particles showed a lower TUNEL-positive rate (less apoptosis) compared to CISM100 particles (Fig. 1B, C). 48h-exposure to VE-PE particles increased
Implant-associated infection is a major source
of morbidity in orthopaedic surgery. There has been extensive research
into the development of materials that prevent biofilm formation,
and hence, reduce the risk of infection. Silver nanoparticle technology
is receiving much interest in the field of orthopaedics for its
antimicrobial properties, and the results of studies to date are
encouraging. Antimicrobial effects have been seen when silver nanoparticles are
used in trauma implants, tumour prostheses, bone cement, and also
when combined with hydroxyapatite coatings. Although there are promising
results with Cite this article: