Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 73 - 73
1 Jul 2020
Albiero A Piombo V Diamanti L Birch M McCaskie A
Full Access

Osteoarthritis is a global problem and the treatment of early disease is a clear area of unmet clinical need. Treatment strategies include cell therapies utilising chondrocytes e.g. autologous chondrocyte implantation and mesenchymal stem/stromal cells (MSCs) e.g. microfracture. The result of repair is often considered suboptimal as the goal of treatment is a more accurate regeneration of the tissue, hyaline cartilage, which requires a more detailed understanding of relevant biological signalling pathways. In this study, we describe a modulator of regulatory pathways common to both chondrocytes and MSCs. The chondrocytes thought to be cartilage progenitors are reported to reside in the superficial zone of articular cartilage and are considered to have the same developmental origin as MSCs present in the synovium. They are relevant to cartilage homeostasis and, like MSCs, are increasingly identified as candidates for joint repair and regenerative cell therapy. Both chondrocytes and MSCs can be regulated by the Wnt and TGFβ pathways. Dishevelled Binding Antagonist of Beta-Catenin (Dact) family of proteins is an important modulator of Wnt and TGFβ pathways. These pathways are key to MSC and chondrocyte function but, to our knowledge, the role of DACT protein has not been studied in these cells. DACT1 and DACT2 were localised by immunohistochemistry in the developing joints of mouse embryos and in adult human cartilage obtained from knee replacement. RNAi of DACT1 and DACT2 was performed on isolated chondrocytes and MSCs from human bone marrow. Knockdown efficiency and cell morphology was confirmed by qPCR and immunofluorescence. To understand which pathways are affected by DACT1, we performed next-generation sequencing gene expression analysis (RNAseq) on cells where DACT1 had been reduced by RNAi. Top statistically significant (p < 0 .05) 200 up and downregulated genes were analysed with Ingenuity® Pathway Analysis software. We observed DACT1 and DACT2 in chondrocytes throughout the osteoarthritic tissue, including in chondrocytes forming cell clusters. On the non-weight bearing and visually undamaged cartilage, DACT1 and DACT2 was localised to the articular surface. Furthermore, in mouse embryos (E.15.5), we observed DACT2 at the interzones, sites of developing synovial joints, suggesting that DACT2 has a role in cartilage progenitor cells. We subsequently analysed the expression of DACT1 and DACT2 in MSCs and found that both are expressed in synovial and bone marrow-derived MSCs. We then performed an RNAi knockdown experiment. DACT1 knockdown in both chondrocyte and MSCs caused the cells to undergo apoptosis within 24 hours. The RNA-seq study of DACT1 silenced bone marrow-derived MSCs, from 4 different human subjects, showed that loss of DACT1 has an effect on the expression of genes involved in both TGFβ and Wnt pathways and putative link to relevant cell regulatory pathways. In summary, we describe for the first time, the presence and biological relevance of DACT1 and DACT2 in chondrocytes and MSCs. Loss of DACT1 induced cell death in both chondrocytes and MSCs, with RNA-seq analysis revealing a direct impact on transcript levels of genes involved in the Wnt and TFGβ signalling, key regulatory pathways in skeletal development and repair


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 49 - 49
1 Dec 2016
Xu Y Maltesen R Larsen L Schonheyder HC Nielsen PH Nielsen JL Thomsen TR Nielsen KL
Full Access

Aim. The aim of this study was to gain insight into the in vivo expression of virulence and metabolic genes of Staphylococcus aureus in a prosthetic joint infection in a human subject. Method. Deep RNA sequencing (RNA-seq) was used for transcriptome profile of joint fluid obtained from a patient undergoing surgery due to acute S. aureus prosthetic joint infection. The S. aureus gene expression in the infection was compared with exponential culture of a S. aureus isolate obtained from the same sample using EdgeR. In addition, the genome of the isolate was sequenced on Miseq, assembled in CLC genomics workbench and annotated by MaGe. Moreover, using nuclear magnetic resonance (NMR) spectroscopy we analysed the metabolites in the joint fluid and in the culture supernatants to determine the biochemical composition of the environments. Results. Antibiotic susceptibility testing by disk diffusion (EUCAST) demonstrated that the strain was susceptible to β-lactams (penicillin and cefoxitin) and macrolides (erythromycin and roxitromycin). This was indirectly confirmed by the annotated genome, because of absence of known resistant genes. The patient showed no signs of improvement during 2-days treatment with antibiotics (different β-lactams and gentamicin) prior to the surgery. The RNA-seq data indicated that the strategy employed by S. aureus to survive and proliferate in the host during antibiotic treatment involved overexpression of various enzymes related to cell-wall synthesis and multidrug efflux pumps. Interestingly, these efflux pumps are only known to be related to fluoroquinolone resistance. Many of the genes encoding virulence factors were upregulated, including toxins and superantigen-like proteins, hemolysins, and immune evasion proteins. A number of chaperones and stress related genes were overexpressed indicating a stress response. Furthermore, the RNA-seq data provided clues of the potential major nutrient sources for the pathogen in vivo. Several amino acid degradation pathways were highly upregulated, e.g. arginine, histidine. Additional carbon sources included N-acetylneuraminate and purine/pyrimidine deoxyribonucleosides as indicated by the upregulation of the genes involved in the degradation pathways of these compounds and higher concentration of these substances in the joint fluid compared to culture supernatants. Conclusions. Our results show that the gene expression pattern of S. aureusin vivo is vastly different from that of an in vitro grown exponential culture, indicating that the pathogen adapts to host environmental conditions by altering gene expression. Finally our study emphasizes the importance of in vivo study in elucidating pathogenesis of S. aureus in prosthetic joint infections


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.