We previously reported that osteoblasts at the curve apex in adolescent idiopathic scoliosis (AIS) exhibit a differential phenotype, compared to non-curve osteoblasts(1). However, the Hueter-Volkmann principle on vertebral body growth in spinal deformities (2) suggests this could be secondary to altered biomechanics. This study examined whether non-curve osteoblasts subjected to mechanical strain resemble the transcriptomic phenotype of curve apex osteoblasts. Facet spinal tissue was collected perioperatively from three sites, (i) the concave and (ii) convex side at the curve apex and (iii) from outside the curve (non-curve) from six AIS female patients (age 13–18 years; NRES 19/WM/0083). Non-curve osteoblasts were subjected to strain using a 4-point bending device. Osteoblast phenotype was determined by
Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.Aims
Methods