Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 26 - 26
1 Apr 2022
Gormley C Dunning M Peffers M Wilkinson M
Full Access

In a recent phase 2 superiority clinical trial we demonstrated that a single dose of 60mg of the human monoclonal antibody denosumab inhibits osteolytic lesion activity in patients undergoing revision total hip arthroplasty (THA), demonstrating proof of biological efficacy for this clinical application. Here, we examined the effect that denosumab has on disease biology at the osteolysis tissue level. Osteolytic tissue taken from the prosthesis-bone lesion interface at revision surgery in patients with osteolysis (n=10 participants that had received a single 60 mg dose of denosumab 8 weeks prior to revision surgery and n=10 that had received placebo) was examined for total genetic message activity and protein levels using whole genome sequencing and mass spectrometry, respectively. The top five upregulated enriched pathways with denosumab treatment included inflammatory response, myeloid cell activation, myeloid leukocyte migration, neutrophil and granulocyte activation (p<6.26 × 10. −28. ). Cell morphogenesis was amongst the most downregulated pathways (p<3.42 ×10. −23. ). Finally, comparison of the trial mRNA and protein data versus mouse single cell RNA sequencing data of the same pathway blockade in mouse tibia showed the same direction of effect, suggesting that giving the drug causes then cells responsible for osteolysis to disperse into a more immature form (128 of 189 genes (z=4.87, P<0.0001) disease and functional pathways at the mRNA level and 10 of 11 (z=2.72, P=0.0065) at the protein level). In this first-in-man study we identify multiple genes and pathways within periprosthetic osteolysis tissue that are affected by denosumab treatment. The dominant pathways involved upregulation of innate inflammatory signaling and downregulation of cell morphogenesis. We also found enrichment of similar disease and functional pathways at both the mRNA and protein levels versus mRNA pathway enrichment found in mouse osteomorphs. These data provide the first human data of the mechanistic effect of denosumab treatment on inflammatory osteolytic lesion activity after joint replacement that is necessary to support its clinical application. ∗Winner of The Bone & Joint Journal prize∗