Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 124 - 124
1 Dec 2020
CETIN M SOYLEMEZ MS OZTURK BY MUTLU I KARAKUS O
Full Access

Bone-patellar tendon-bone autografts, hamstring autografts or allografts are widely used grafts for ACL revision surgeries. Also use of quadriceps autograft for both primary and revision ACL surgeries is in an increasing popularity due to its biomechanical superior properties and less donor site morbidity. However, although several fixation techniques and devices for quadriceps tendon graft fixation on femoral side have been reported, literature lacks about biomechanical studies comparing properties of these different fixation techniques and devices. We aimed to investigate whether there is a difference between the fixation techniques of quadriceps tendon graft by using different fixation techniques and devices on the femoral side in terms of stiffness and amount of slippage in the tunnel. Full-thickness central parts of quadriceps tendons from paired knees of twenty five calf knees were fixed through a 10mm x 25mm tunnel in twenty five paired sheep femurs. Quadriceps tendon patellar side with soft tissue ending fixed with four different fixation devices (adjustable suspensory system (group 1), absorbable interference screw (group 2), titanium interference screw (group 3) and adjustable suspensory system + absorbable interference screw (group 4)) and quadriceps tendon with a patellar bone plug fixed with a titanium interference screw (group 5) were tested in a servohydraulic materials testing machine. 10 samples were included in each group. After applying a preload of 10 N, a cyclic force was applied for 20 cycles from 10N to 110N at a 1 hertz frequency. Amount of slippage in the tunnel was calculated as the difference measured in millimeters between length at 10 N after 20 cycles and starting length at 10 N (Graph 1). To determine the stiffness, a single load-to-failure cycle was performed at a strain rate of 20 mm/min as the last step (Figure 1). Rupture of the graft was not seen in any of the samples. Median values of amount of slippage in the tunnel were 6,41mm, 5,99mm, 3,01mm, 4,83mm, and 3,94mm respectively. Median values of maximum load at failure were 464N, 160N, 350N, 350N and 389N respectively. Amount of slippage in the tunnel was highest in the group 1 and was lowest in the group 3 (p<0.001). Group 1 was found to be most resistant group against load-to-failure test and group 2 was the weakest (p<0.001). However inter-group analyses between group 3 and 5 revealed that, although group 3 had the least slippage in the tunnel, group 5 was better in terms of stiffness, but there was no statistically significant difference (p=0,124 and 0,119 respectively). There was a significant difference between group 2 and 3 in both amount of slippage in the tunnel and stiffness (p=0,001 and 0.028 respectively)(Table 1). Our study revealed that, although quadriceps graft with a bone plug fixed with metal interference screws is widely presumed to be a stable fixation technique, there was no significant difference in terms of stiffness when compared with quadriceps graft with soft tissue ending fixed with a metal interference screw. Although adjustable suspensory device group was the best in the terms of resistance against load-to-failure, it was the worst in terms of amount of slippage from the tunnel. Thus, if a suspensory device is to be used, it must be kept in mind that a strong 20 cycles of intra-operative tension force must be applied to prevent further slippage of the graft in the tunnel which can result in failure of reconstruction. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 26 - 26
1 Mar 2021
Malik S Hart D Parashin S Malik S McRae S MacDonald P
Full Access

Abstract

Objectives

To evaluate mechanical properties of three suture-tendon constructs, the Krackow stitch (KS), the modified Prusik knot (PK) and the Locking SpeedWhip (LSW), using human cadaveric quadriceps grafts (QT).

Methods

Thirty QT grafts were obtained from human cadaver specimens and an equal number of tendon-suture constructs were prepared for three stitches: KS, PK and LSW. The constructs were mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subject to tensile loading based on an established protocol. Load and displacement data for each tendon-suture construct were recorded.


Abstract

Objectives

Initial performance of sutured quadriceps tendon (QT) ACL graft constructs is not well studied in human tissue and the results of animal tissue testing may not extend to the human model. Two common methods of preserving human tissue are to freeze the specimens immediately after death or embalm with formalin solution. The purpose of this study is to compare elongations and loads in biomechanical testing of fresh-frozen to that of embalmed quadriceps tendon-suture constructs.

Methods

Twenty QT grafts were harvested from human cadaver specimens, 10 fresh-frozen and 10 embalmed. The grafts were prepared with the modified Prusik knot using a No.2 FiberWire (Arthrex, Naples, FL), mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subjected to tensile loading based on an established protocol. Each tendon was preconditioned with 3 cycles of 0–100N at 1Hz followed by a constant load of 50N for 1 minute and 200 cycles from 50–200N at 1Hz and then loaded to failure at a displacement rate of 20mm/min. Load and displacement data for each tendon-suture construct was recorded.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 56 - 56
1 Mar 2021
Malik S Hart D Parashin S McRae S Peeler J MacDonald P
Full Access

Abstract

Objectives

ACL graft-suture fixation can be constructed with needle or needleless techniques. Needleless techniques have advantages of decreased injury, preparation time and cost. The Nice Knot (NK) is common among upper extremity procedures; however, its efficacy in ACL reconstruction relative to other needleless methods is not well known. The purpose of this study was to biomechanically compare quadriceps tendon (QT) grafts prepared with the NK versus the modified Prusik Knot (PK).

Methods

Twenty QT grafts were harvested from 10 embalmed human cadaver specimens. 10 were prepared with the PK and 10 with the NK using a No.2 FiberWire (Arthrex, Naples, FL). The prepared grafts were then mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subjected to tensile loading based on an established protocol. Each tendon-suture specimen was preconditioned with 3 cycles of 0–100N at 1Hz followed by a constant load of 50N for 1 minute and cyclic loading of 200 cycles from 50–200N at 1Hz and then loaded to failure at a displacement rate of 20mm/min. Load and displacement data for each tendon-suture construct was recorded by the testing machine.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 82 - 82
1 Jul 2014
Sasaki N Farraro K Kim K Woo S
Full Access

Summary Statement

ACL reconstruction using a quadriceps tendon autograft was quantitatively evaluated using a robotic testing system. Biomechanical results on joint stability and graft function support its use as an alternative to the hamstrings.

Introduction

Recently, a number of surgeons have chosen the quadriceps tendon (QT) autograft as an alternative autograft over the hamstrings tendon for ACL reconstruction because its bone-to-bone healing on one side, large size, and preservation of lateral and rotatory knee function could lead to fewer post-operative complications. However, there have been little or no biomechanical studies that quantitatively evaluate knee function after reconstruction using a QT autograft. Therefore, the objective of this study was to assess the function of a reconstructed knee with a QT autograft and compare the results with a quadrupled semitendinosus and gracilis (QSTG) tendon autograft on the same knee.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 61 - 61
1 Aug 2012
Berry A Phillips N Sparkes V
Full Access

Knee injuries in cyclists are often thought to result from an imbalance of load during the cycling motion as a consequence of inappropriate bike set-up. Recently, it has been postulated that incorrect foot positioning may be a significant factor in lower limb injury and poor cycling performance. The purpose of this study is to assess the effect of changing the foot position at the shoe-pedal interface on Vastus Medialis (VM) and Vastus Lateralis (VL) activity (mean and mean peak), knee angle and knee displacement.

Maximum power tests were completed on a first visit, with data collection on a second visit recorded at 60% of the subjects maximum. Video footage and surface electromyography (SEMG) from VM and VL muscles was obtained. Data was recorded over 10 crank cycles in 3 experimental conditions; neutral, 10 degrees inversion and 10 degrees eversion using Ethylene Vinyl Acetate (EVA) wedges fitted between the cyclists shoe and the shoe cleat. Raw data (mean SEMG, mean peak SEMG) was obtained using Noraxon and SiliconCOACH measured knee angle and knee displacement. Data was analyzed using Friedmans test with appropriate post hoc tests.

12 male subjects (range 26-45, mean 35.9 years) completed the study. Mean and mean peak SEMG data showed no significant differences between the 3 experimental conditions for VM and VL. VM:VL ratios from raw mean SEMG data demonstrated a decrease in synchronicity in inversion and eversion compared to neutral. Pronators demonstrated most synchronicity in inversion and least synchronicity in eversion. There were statistically significant differences in knee angle and knee displacement between neutral, inversion and eversion (p<0.05). Inversion promoted smaller knee valgus angles and greater knee displacement from the bike. Eversion promoted larger knee valgus angles and a smaller displacement from the bike.

By altering the foot position to either 10 degrees inversion or 10 degrees eversion, knee angle and knee displacement can be significantly influenced. Clinically, subjects who foot type is classified as pronating may benefit from some degree of forefoot inversion posting. Further research on subjects with knee pain needs to be undertaken.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 56 - 56
1 Aug 2012
Roos P Button K Rimmer P van Deursen R
Full Access

ACL injured patients show variability in the ability to perform functional activities (Button et al., 2006). It is unknown whether this is due to differences in physical capability or whether fear of re-injury plays a role. Fear of re-injury is not commonly addressed in rehabilitation. This study aimed to investigate whether fear of re-injury impacts rehabilitation of ACL injured patients. An initial group of five ACL reconstructed participants (ACLR, age: 30±11 years, weight: 815±115 N, height: 1.74±0.07 m, all male), five ACL deficient participants (ACLD, age: 31±12 years, weight: 833±227 N, height: 1.80±0.11 m, four male and one female), and five healthy controls (age: 30±3 years, weight: 704±126 N, height: 1.70±0.09 m, three male and two female) were compared. Fear of re-injury was assessed using the Tampa Scale for Kinesiophobia (Kvist, 2004). Quadriceps strength was measured on a Biodex dynamometer. Functional activity was assessed by a single legged maximum distance hop (on the injured leg for ACL patients). Motion analysis was performed with a VICON system, and a Kistler force plate. Hop distance was calculated using the ankle position. The peak knee extension moment during landing, and the knee angle at this peak moment were calculated in VICON Nexus. The ACLD group scored worse on the Tampa scale for Kinesiophobia than the ACLR group (32±4 and 26±4). The ACLD patients did not hop as far as the ACLR and control groups (1.0±0.3, 1.3±0.1 and 1.4±0.3 m). The peak knee extension moments during landing were lowest in the ACLD group (263±159 Nm), slightly higher in the control group (354±122 Nm) and highest in the ACLR group (490±222 Nm), while knee flexion angles at these moments were similar (ACLD: 28±11, ACLR: 33±7 and control: 36±13 degrees). The ACLD group had weaker quadriceps than the control group, while the ACLR group was stronger (143±44 Nm, 152±42, and 167±50 Nm respectively). Fear of re-injury and decreased quadriceps strength potentially both impact on the functional performance of ACL injured patients. Rehabilitation of ACL injured patients could therefore be improved by addressing strength and fear of re-injury. Future research with more participants will further clarify this


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1303 - 1305
1 Sep 2005
Kragh JF Svoboda SJ Wenke JC Ward JA Walters TJ

Our aim was to compare the biomechanical properties of suturing methods to determine a better method for the repair of lacerated skeletal muscle.

We tested Kessler stitches and the combination of Mason-Allen and perimeter stitches. Individual stitches were placed in the muscle belly of quadriceps femoris from a pig cadaver and were tensioned mechanically. The maximum loads and strains were measured and failure modes recorded. The mean load and strain for the Kessler stitches were significantly less than those for combination stitches. All five Kessler stitches tore out longitudinally from the muscle. All five combination stitches did not fail but successfully elongated.

Our study has shown that the better method of repair for suturing muscle is the use of combination stitches.