Introduction. Revision hip arthroplasty with massive proximal femoral bone loss remains challenging. Whilst several surgical techniques have been described, few have reported long term supporting data. A
The goals of revision arthroplasty of the hip are to restore the anatomy and achieve stable fixation for new acetabular and femoral components. It is important to restore bone stock, thereby creating an environment for stable fixation for the new components. The bone defects encountered in revision arthroplasty of the hip can be classified either as contained (cavitary) or uncontained (segmental). Contained defects on both the acetabular and femoral sides can be addressed by morselised bone graft that is compacted into the defect. Severe uncontained defects are more of a problem particularly on the acetabular side where bypass fixation such as distal fixation on the femoral side is not really an alternative. Most authors agree that the use of morselised allograft bone for contained defects is the treatment of choice as long as stable fixation of the acetabular component can be achieved and there is a reasonable amount of contact with bleeding host bone for eventual ingrowth and stabilisation of the cup. On the femoral side, contained defects can be addressed with impaction grafting for very young patients or bypass fixation in the diaphysis of the femur using more extensively coated femoral components or taper devices. Segmental defects on the acetabular side have been addressed with structural allografts for the past 15 to 20 years. These are indicated in younger individuals with Type 3A defects. Structural grafts are unsuccessful in Type 3B defects. Alternatives to the structural allografts are now being utilised with shorter but encouraging results in most multiply operated hips with bone loss. New porous metals such as trabecular metal (tantalum), which has a high porosity similar to trabecular bone and also has a high coefficient of friction, provide excellent initial stability. The porosity provides a very favorable environment for bone ingrowth and bone graft remodeling. Porous metal acetabular components are now more commonly used when there is limited contact with bleeding host bone. Porous metal augments of all sizes are being used instead of structural allografts in most situations. On the femoral side, metaphyseal bone loss, whether contained or uncontained, is most often addressed by diaphyseal fixation with long porous or tapered implants, modular if necessary. Distal fixation requires at least 4 centimeters of diaphyseal bone and in Type IV femurs, a choice must be made between a mega prosthesis or a
We have followed a consecutive series of revision hip arthroplasties, performed for severe femoral bone loss using anatomic specific
A seventy-five-year-old female patient presented with pain and deformity of her left leg of three days duration. Hybrid THRA has been done 11 years ago at her left hip for the treatment of osteoarthritis. Massive osteolysis and pathologic fracture were observed on plain radiograph (Fig. 1). Revision THRA using an allograft prosthesis composite (APC) was planned for solution of extensive bone loss of the proximal femur. Surgical exposure was performed through extended trochanteric osteotomy with the patient supine. Step-cut osteotomy was done at the remained proximal part of host femur to make match with the distal part of APC. Meticulous removal of granulation tissues and remaining cement was done. As Acetabular cup was stable, 60 mm sized high-walled polyethylene liner was exchanged. Calcar reconstruction prosthesis was cemented into a
Massive uncontained glenoid defects are a difficult surgical problem requiring reconstruction in the setting of either primary or revision total shoulder arthroplasty. Our aim is to present a new one-stage technique that has been developed in our institution for glenoid reconstruction in the setting of massive uncontained glenoid bone loss. We utilise a modified delto-pectoral approach to perform our dual biology allograft autograft glenoid reconstruction. The native glenoid and