Advertisement for orthosearch.org.uk
Results 1 - 20 of 42
Results per page:

The objective of this study was to evaluate the kinematics of a high-flexion, posterior-stabilized total knee arthroplasty (TKA) in weight-bearing, deep knee bending motion. Fifteen patients implanted with the Legacy Posterior Stabilized Flex (8; mobile bearing and 7; fixed bearing), 18 patients with Scorpio NRG, and 8 patients with PFC sigma RP-F were examined during a deep knee bending motion using fluoroscopy. Femorotibial motion was determined using a 2-dimensional to 3-dimensional registration technique, which used computer-assisted design models to reproduce the position of metallic implants from single-view fluoroscopic images. The average flex-ion ranges of motion between the metallic implants were 120° with Legacy Flex, 125° with NRG and 121° with RP-F. The average rotation of the femoral component was 11° external rotation (ER) with Legacy Flex, 12° with NRG and 11° with RP-F. The mean kinematic pathways were early rollback, lateral pivot with ER, and bicondylar rollback with Legacy Flex, medial pivot with ER and bicondylar rollback with NRG and central pivot with ER and bicondylar rollback with RP-F. The in vivo kinematics was different due to the prosthesis designs to obtain weight-bearing deep knee bending motion


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1271 - 1278
1 Dec 2023
Rehman Y Korsvold AM Lerdal A Aamodt A

Aims

This study compared patient-reported outcomes of three total knee arthroplasty (TKA) designs from one manufacturer: one cruciate-retaining (CR) design, and two cruciate-sacrificing designs, anterior-stabilized (AS) and posterior-stabilized (PS).

Methods

Patients scheduled for primary TKA were included in a single-centre, prospective, three-armed, blinded randomized trial (n = 216; 72 per group). After intraoperative confirmation of posterior cruciate ligament (PCL) integrity, patients were randomly allocated to receive a CR, AS, or PS design from the same TKA system. Insertion of an AS or PS design required PCL resection. The primary outcome was the mean score of all five subscales of the Knee injury and Osteoarthritis Outcome Score (KOOS) at two-year follow-up. Secondary outcomes included all KOOS subscales, Oxford Knee Score, EuroQol five-dimension health questionnaire, EuroQol visual analogue scale, range of motion (ROM), and willingness to undergo the operation again. Patient satisfaction was also assessed.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 545 - 545
1 Nov 2011
Jayasuriya R Buckley S Hamer A Kerry R Stockley I Tomouk M Wilkinson J
Full Access

In this 2-year randomised clinical trial we examined whether cemented femoral prosthesis geometry affects the pattern of strain-adaptive bone remodelling in the proximal femur after THA. 128 patients undergoing primary THA were randomised to receive a Charnley (shape-closed, no taper), Exeter (force-closed, double-tapered) or C-stem (forced-closed, triple-tapered) prosthesis. All received a cemented Charnley cup. Proximal femoral BMD change over 2 years was measured by DXA. Urine and serum samples were collected at pre-operative baseline and over 1 year post-operatively. N-telopeptides of type-I-collagen (NTX) was measured in urine as a marker of osteoclast activity and Osteocalcin (OC) in serum as a maker of osteoblast activity. Clinical outcome using the Harris and Oxford hip scores, and prosthesis migration measured using digitised radiographs (EBRA-Digital) were measured over 2 years. The baseline characteristics of the subjects in each group were similar (P> 0.05). Decreases in femoral BMD were observed over the first year for all prosthesis designs. Bone loss was greatest (14%) in the proximal medial femur (region 7). The pattern and amount of bone loss observed was similar between all prosthesis designs (P> 0.05). Transient rises in both osteoclast (NTX) and osteoblast (OC) activity also occurred over year 1, and were similar in pattern in the 3 prosthesis groups (p> 0.05). All prostheses showed migration patterns that were true to their design type and similar improvements in clinical hip scores were observed over the 2 year study. Differences in the proposed mechanism of load transfer between prosthesis and host bone in force-closed versus shape-closed femoral prosthesis designs in THA are not major determinants of prosthesis-related remodelling


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 53 - 53
1 Jan 2016
Mori S Asada S Inoue S Matsushita T Hashimoto K Akagi M
Full Access

Objective. Tibia vara seen in Japanese patients reportedly influences the tibial component alignment when performing TKA. However, it is unclear whether tibia vara affects the component position and size selection. We therefore determined (1) the amount of medial tibial bow, (2) whether the tibia vara influences the aspect ratio of the tibial resected surface in aligning the tibial component with the tibial shaft axis (TSA), and (3) whether currently available tibial components fit the shapes of resected proximal tibias in terms of aspect ratio. Material and Methods. The study was performed using CT data from 90 lower limbs in 74 Japanese female patients with primary varus knee OA, scheduled for primary TKAs between January 2010 and March 2012. We measured the tibia vara angle (TVA; the angle between the TSA and the tibial mechanical axis), proximal varus angle (PVA; angle between the TSA and the line connecting the center of the tibial eminence and the center of the proximal 1/3 of the tibia) using three-dimensional preoperative planning software [Fig.1]. Then the mediolateral and middle AP dimensions of the resected surface when the tibial component was set so that its center aligned with the TSA was measured. We determined the correlations of the aspect ratio (the ML dimension divided by the AP dimension) of the resected surface with TVA or PVA and compared the aspect ratios to those of five prosthesis designs. Results. The mean TVA and PVA were 0.6° and 2.0°, respectively. The aspect ratio negatively correlated with both TVA and PVA (r = −0.53 and −0.55, respectively) [Fig. 2, 3]. The mean aspect ratio of the resected surface was 1.48 but gradually decreased with increasing AP dimension, whereas four of the five prostheses had a constant aspect ratio. Conclusions. The aspect ratio of resected tibial surface was inversely correlated to the degree of tibia vara, and currently available prosthesis designs do not fit well to the resected surface in terms of aspect ratio


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 416 - 416
1 Jul 2010
Bagaria V Harshavardhana N Sapre V Chadda A Kuthe A
Full Access

Purpose: There is no data concerning morphological dimensions of distal femur(DF), proximal tibia(PT) and thickness of patella(TP) in Indian population and our objective was to analyse the anthropometric data in Indian knees and to correlate them with existing knee arthroplasty systems. Methods: MRI scans of 25 patients(15M;10F) who underwent bilateral knee scans for ligamental injuries were collected. Patients with arthritis, bone loss, varus/ valgus deformity of > 150 and those with immature skeleton were excluded. The mean age was 32 years (range 18–53y). Three surgeons independently measured medio-lateral(ML), antero-posterior(AP) lengths & aspect ratio(AR) of DF, PT and TP on three occasions one week apart to account for intra & inter-observer variability. The resultant data of 50 knees was analysed using SPSS v16.0 and compared with five different knee arthroplasty systems (PFC sigma/NexGen/Scorpio/IB-II/ Gender specific knee). Results: The mean ML & AP for proximal tibia was 73.3±5.3 & 47.8±4.3 mm. The mean ML & AP (lateral condyle) for distal femur was 74.3±5.9 & 65.4±5.0 mm. The mean unresected thickness of patella was 24.7 & 21.8 mm in males & females respectively. The ML & AP showed a statistically significant positive correlation with person’s height (ML®=0.55;AP®=0.50 & p=0.01). A decrease in AR for increasing AP dimension was noted for both distal femur and proximal tibia (Tibia®=0.153;p=0.29 & Femur:®=−0.91;p=0.001). Discussion: None of the prosthesis designs mimicked this decrease in AR and NexGen infact showed increase in AR. Only Gender specific knee closely mimicked normal variation in AR and is available only for females (in India). Most of the available TKR prosthesis designs differ from true knee morphometry of Indian population. These data provides the basis for designing optimal prosthesis for people of Indian/Asian origin in UK/overseas


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 119 - 119
1 Mar 2010
Bagaria VB Harshavardhana NS Mohanty SS
Full Access

There is no data concerning morphological dimensions of distal femur, proximal tibia and patella in Indian population. The objective was to analyse the anthropometric data in Indian knees and to co-relate them with existing knee arthroplasty systems. MRI scans of 25 patients (15 males & 10 females) who underwent bilateral knee scans for ligamental injuries were collected. Patients with arthritis, bone loss, varus/valgus deformity of > 15 degrees and those with immature skeleton were excluded. The mean age was 32 yrs (18–53 yrs). Three surgeons independently measured medio-lateral (ML), antero-posterior(AP) dimensions & aspect ratio(AR) of distal femur, proximal tibia and unresected patellar thickness(PT) on three occasions one week apart to account for intra & inter-observer variability. The resultant data of 50 knees was analysed using SPSS v14.0 and compared with five prosthesis knee systems (PFC sigma, NexGen, Scorpio, IB-II & Gender specific knee). The mean ML & AP for proximal tibia was 73.3±5.3 & 47.8±4.3 mm. The mean ML & AP (lateral condyle) for distal femur was 74.3±5.9 & 65.4±5.0 mm. The mean PT was 24.7 & 21.8 mm in males & females respectively. The ML & AP showed a statistically significant positive correlation with the height of the person (ML r=0.55; AP r=0.50 & p=0.01). The tibial and femoral AR showed higher ratio for smaller knees & smaller ratio for larger knees i.e. decline in AR for increasing AP dimension. None of the prosthesis designs mimicked this decrease in AR and NexGen prosthesis infact showed an increase in AR. Gender differences in the morphological data were shown by variable tibial AR. Most of the available TKR prosthesis designs differ from actual knee morphometry of Indian population. These data provides the basis for designing optimal prosthesis for people of Indian/Asian origin in UK and overseas


Bone & Joint Research
Vol. 13, Issue 5 | Pages 226 - 236
9 May 2024
Jürgens-Lahnstein JH Petersen ET Rytter S Madsen F Søballe K Stilling M

Aims

Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear.

Methods

A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims

One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined.

Methods

A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).


Bone & Joint 360
Vol. 13, Issue 3 | Pages 20 - 24
3 Jun 2024

The June 2024 Knee Roundup360 looks at: The estimated lifetime risk of revision after primary knee arthroplasty influenced by age, sex, and indication; Should high-risk patients seek out care from high-volume surgeons?; Stability and fracture rates in medial unicondylar knee arthroplasties; Rethinking antibiotic prophylaxis for dental procedures post-arthroplasty; Evaluating DAIR: a viable alternative for acute periprosthetic joint infection; The characteristics and predictors of mortality in periprosthetic fractures around the knee; Patient health-related quality of life deteriorates significantly while waiting six to 12 months for total hip or knee arthroplasty; The importance of looking for diversity in knee implants.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 4 - 4
1 Dec 2016
Cinats D Bois A Hildebrand K
Full Access

Total Elbow Arthroplasty (TEA) is a procedure to treat a number of conditions including rheumatoid arthritis (RA), post-traumatic arthritis, and osteoarthritis. To date, there has been minimal literature published on the Latitude since its release in 2001. There is one study reporting outcomes from the Latitude, a German study published in 2010. The purpose of this study was to analyse outcomes from primary Latitude TEAs. We performed a retrospective case series of 23 TEAs performed on 20 patients. 6 patients required revision surgery and were not included in the analysis. One patient was lost to follow up, resulting in 17 patients included for ROM analysis. All patients received Latitude TEA through a posterior approach and underwent a standard rehab protocol. 11 Patients were recalled at least two years post-op and were administered DASH and MAYO questionnaires. Complications such as triceps insufficiency, ulnar nerve dysfunction, infection, and aseptic loosening were recorded. Outcomes were compared using the Wilcoxon Signed-Rank test in STATA. Immediate post-op radiographs and patients most recent radiographs were analysed by a blinded upper-extremity surgeon not involved in the initial operation and analysed for loosening and implant malpostioning. Mean follow up was 4.8 years (range 2.6–7.5 years). Analysis of 17 TEAs in 16 patients revealed no difference in pre-operative ROM and post-operative ROM for flexion (121°±20 vs 129°±16, p=0.13) extension (40°±27 vs 27°±15, p=0.19), pronation (73°±13 vs 75°±24, p=0.55) or supination (64°±22 vs 68°±14, p=0.52). Patients who underwent TEA for RA had a significant improvement in flexion (121°±15 vs 135°±10, p<0.02). There was a statistically significant improvement in flexion-extension arc post-operatively (101°±28) compared to pre-operative scores (83±23 degrees, p<0.02). DASH and MAYO scores were calculated from 11elbows in 11 non-revision patients able to return for examination. The average MAYO score was 87.9 with nine patients in the “excellent” category, two patients in the “good” category, one patient in the “fair” category, and one in the “poor” category. The average DASH score was 32.9. Two patients underwent revision for periprosthetic fractures, two patients underwent revision for infection, one underwent revision for aseptic loosening and two for radial head dissociation (rate of 30%). This is one of the first studies examining the outcomes of the Latitude TEA. This retrospective case series demonstrates that the Latitude TEA has promising outcomes with respect to improving patient pain and functioning as assessed by the MAYO. Treatment using the Latitude TEA results in favorable functional outcomes for a majority of patients and offers an improvement in flexion-extension arc. Furthermore, our results are comparable to the MAYO scores reported by other studies analysing different prosthesis designs. The complication rate in our series was comparable to published rates of 20–40%


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 83 - 83
1 Oct 2012
Belvedere C Ensini A Notarangelo D Tamarri S Feliciangeli A Leardini A
Full Access

During total knee replacement (TKR), knee surgical navigation systems (KSNS) report in real time relative motion data between the tibia and the femur from the patient under anaesthesia, in order to identify best possible locations for the corresponding prosthesis components. These systems are meant to support the surgeon for achieving the best possible replication of natural knee motion, compatible with the prosthesis design and the joint status, in the hope that this kinematics under passive condition will be then the same during the daily living activities of the patient. Particularly, by means of KSNS, knee kinematics is tracked in the original arthritic joint at the beginning of the operation, intra-operatively after adjustments of bone cuts and trial components implantation, and after final components implantation and cementation. Rarely the extent to which the kinematics in the latter condition is then replicated during activity is analysed. As for the assessment of the active motion performance, the most accurate technique for the in-vivo measurements of replaced joint kinematics is three-dimensional video-fluoroscopy. This allows joint motion tracking under typical movements and loads of daily living. The general aim of this study is assessing the capability of the current KSNS to predict replaced joint motion after TKR. Particularly, the specific objective is to compare, for a number of patients implanted with two different TKR prosthesis component designs, knee kinematics obtained intra-operatively after final component implantation measured by means of KSNS with that assessed post-operatively at the follow-up by means of three-dimensional video-fluoroscopy. Thirty-one patients affected by primary gonarthrosis were implanted with a fixed bearing posterior-stabilized TKR design, either the Journey® (JOU; Smith&Nephew, London, UK) or the NRG® (Stryker®-Orthopaedics, Mahwah, NJ-USA). All implantations were performed by means of a KSNS (Stryker®-Leibinger, Freiburg, Germany), utilised to track and store joint kinematics intra-operatively immediately after final component implantation (INTRA-OP). Six months after TKR, the patients were followed for clinical assessment and three-dimensional video fluoroscopy (POST-OP). Fifteen of these patients, 8 with the JOU and 7 with the NRG, gave informed consent and these were analyzed. At surgery (INTRA-OP), a spatial tracker of the navigation system was attached through two bi-cortical 3 mm thick Kirschner wires to the distal femur and another to the proximal tibia. The conventional navigation procedure recommended in the system manual was performed to calculate the preoperative deformity including the preoperative lower limb alignment, to perform the femoral and tibial bone cuts, and to measure the final lower limb alignment. All these assessment were calculated with respect to the initial anatomical survey, the latter being based on calibrations of anatomical landmarks by an instrumented pointer. Patients were then analysed (POST-OP) by three-dimensional video-fluoroscopy (digital remote-controlled diagnostic Alpha90SX16; CAT Medical System, Rome-Italy) at 10 frames per second during chair rising-sitting, stair climbing, and step up-down. A technique based on CAD-model shape matching was utilised for obtaining three-dimensional pose of the prosthesis components. Between the two techniques, the kinematics variables analysed for the comparison were the three components of the joint rotation (being the relative motion between the tibial and femoral components represented using a standard joint convention, the translation of the line through the medial and lateral contact points (being these points assumed to be where the minimum distance between the femoral condyles and the tibial baseplate is observed) on the tibial baseplate and the corresponding pivot point, and the location of the instantaneous helical axes with the corresponding mean helical axis and pivot point. In all patients and in both conditions, physiological ranges of flexion (from −5° to 120°), and ab-adduction (±5°) were observed. Internal-external rotation patterns are different between the two prostheses, with a more central pivoting in NRG and medial pivoting in JOU, as expected by the design. Restoration of knee joint normal kinematics was demonstrated also by the coupling of the internal rotation with flexion, as well as by the roll-back and screw-home mechanisms, observed somehow both in INTRA- and POST-OP measurements. Location of the mean helical axis and pivot point, both from the contact lines and helical axes, were very consistent over time, i.e. after six months from intervention and in fully different conditions. Only one JOU and one NRG patient had the pivot point location POST-OP different from that INTRA-OP, despite cases of paradoxical translation. In all TKR knees analysed, a good restoration of normal joint motion was observed, both during operation and at the follow-up. This supports the general efficacy of the surgery and of both prosthesis designs. Particularly, the results here reported show a good consistency of the measurements over time, no matter these were taken in very different joint conditions and by means of very different techniques. Intra-operative kinematics therefore does matter, and must be taken into careful consideration for the implantation of the prosthesis components. Joint kinematics should be tracked accurately during TKR surgery, and for this purpose KSNS seem to offer a very good support. These systems not only supports in real time the best possible alignment of the prosthesis components, but also make a reliable prediction of the motion performance of the replaced joint. Additional analyses will be necessary to support this with a statistical power, and to identify the most predicting parameters among the many kinematics variables here analysed preliminarily


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 602 - 602
1 Dec 2013
Zhou H Shaw J Li X
Full Access

Introduction:. Due to improvement in overall prosthesis designs and surgical methods, there have been increasing numbers of total ankle arthroplasty performed with encouraging intermediate results. While European registries have been able to perform long term follow-ups and analysis on total ankle arthroplasty patients, majority of the US studies have been based on experiences at a single institution. There is currently limited data on the recent trends of total ankle arthroplasty. The purpose of our study is to evaluate the in-patient demographics, complications and readmission rate in patients after total ankle arthroplasty at academic medical centers in United States. Patients & Methods:. We queried the University Healthsystems Consortium (UHC) administrative database from 2007 to 2011 for patients who underwent total ankle arthrolasty by ICD-9 procedure code 81.56. A descriptive analysis of demographics was performed, followed by a similar analysis of patient clinical benchmarks, including hospital length of stay, hospital direct cost, in-hospital mortality, and 30-day readmission rates. Results:. Our cohort consisted of 2,361 adult patients who underwent a total ankle arthroplasty at 95 different academic medical centers across the country during the specified time period. The annual surgical volume for individual surgeons who performed this procedure was 5 cases +/− 3. The cohort was comprised of 47% male and 53% female patients. The majority of the cohort 2,091 (88.5%) was white, 85 (3.6%) were black, 23 (1%) were Hispanic, and 162 (6.8%) other. The mean age of the cohort was 62 years old +/− 11. At least 70% of the cohort had one or more chronic medical conditions. The mean LOS for the cohort was 2.2 days +/− 1.26. The mean total direct cost for the hospital was $16,000 +/− 7,000 per case. 83% of the cohort had private insurance, 15% had Medicare, and 2% had Medicaid. In hospital mortality was less than 1% for the cohort during their index hospitalization. Inpatient complication rate include: DVT 2.3%, re-operation 0.7%, and infection 3.2%. There was a readmission rate of 2.6% within the first 30 days from the time of discharge. Discussion/Conclusion:. Total ankle arthroplasty in the United States is a relatively safe procedure with low overall complication rates including infection (3.2%), DVT (2.3%), and re-operation (0.7%). Length of stay after the procedure is around 2 days with a total direct hospital cost of $16,000 +/− $7,000 and 2.6% readmission rate (30 days). Majority of the patients were Caucasian and had private insurance


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 304 - 304
1 Jul 2008
Bucher T Cottam H Apthorp H Butler-Manuel A
Full Access

Introduction: Acetabular loosening can limit long-term success of total hip replacement. There are at least 62 different prosthesis designs available in the UK, many of which have no long term results. Revision surgery is expensive, challenging and potentially dangerous. There is still currently debate about the best method of acetabular fixation, in particular, regarding the use of press fit devices in elderly osteoporotic bone. Our study aims to test the null hypothesis that there is no significant difference in outcome between cemented and non-cemented acetabular fixation in this group of patients. Methods: Patients over 72 years of age were prospectively randomised to receive either a cemented Exeter cup or a HA coated press fit cementless cup. Both groups received a cemented Exeter stem. The patients were assessed pre-operatively and reviewed at 6 weeks, 6 months and yearly in a research clinic, by an independent observer. Outcome measures were the Merle D’Aubignon Postel, Oxford Hip and Visual analogue pain scores. The implants were also assessed radiographically and all complications were recorded. Results: To date 151 patients have been recruited into the trial. 2 year data is available for 69 patients. There were no differences in satisfaction, pain or hip scores between the groups. There have been no major surgical complications. In particular, there have been no failures of acetabular fixation, dislocations or deep infections. Discussion: There have been no failures in either group. Although there is insufficient data at this stage to reject our null hypothesis, there is no early evidence for concern in using cementless cups in elderly patients


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 323 - 323
1 May 2010
Lebel B Lewallen D
Full Access

Introduction: Dislocation following total knee arthroplasty (TKA) is an unusual but dramatic post-operative complication. Previously reports involve only a few isolated cases. This study retrospectively analyzed the incidence, associated factors and treatment of dislocation following TKA. Method: All cases of TKA dislocation since 1970, when the first TKA was done at our institution, were identified from our institutional total joint registry (31.000 TKA). The medical history and X-ray were reviewed on all cases with this diagnosis. The 58 cases identified were reviewed with particular attention to associated factors that might contribute to this problem. Results: The overall incidence of TKA dislocation was 1.87 per 1.000 arthroplasties, with a rate of 0.93 and 6.61 for primary and revision TKA respectively. The dislocations occurred at the mean of 29.5 months (range 0 to 193). Original prosthesis designs used were posterior-stabilized (53%), cruciate retaining (31%) and rotating hinge (16%). Dislocation was associated with a history of ligament laxity in 45.6% of patients, extensor mechanism deficiency in 35.5% and TKA infection in 25.9%. The mean follow-up post dislocation was 4.8 years (range 0.1 to 20.1). Non operative treatment was used for 29 knees and resulted in 25 knees experiencing further symptomatic instability. The remaining knees were treated by surgery. Of those treated by revision TKA (N=27) only 3 complained of symptomatic instability (P< 0.001). Conclusions: TKA dislocation is a major complication. Conservative treatment is ineffective. Revision TKA reliably yields a stable knee in 89% of cases so treated. These results emphasize the importance of proper surgical technique, careful soft tissue balancing, and adequate constraint in the prevention and treatment of this problem


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 14 - 14
1 Mar 2010
Brownhill JR Beaton BJ Ferreira LM Johnson JA King GJW
Full Access

Purpose: Aseptic loosening is one of the leading causes of failure in total elbow arthroplasty. It is logical to postulate that incorrect implant positioning and alignment may lead to excessive loading and wear which can induce the loosening cascade. However, the effect of implant malalignment on wear inducing loads in the elbow is not yet known. This in-vitro study determined the effect of anterior malpositioning, and varus-valgus (VV) and internal-external (IE) malrotations on humeral stem loading in total elbow arthroplasty. Method: The humeral, ulnar, and radial components of a linked total elbow arthroplasty were optimally positioned using computer navigation in eight cadaveric elbows, mounted in a load/motion control elbow simulator (age 75yrs, range 42–93; 5 male). A modular, humeral component was employed to generate implant malpositioning errors of ±6° VV, ±8° IE, and 5mm anterior. The implant was instrumented with strain gauges to quantify VV and IE bending loads during elbow flexion with the forearm in supination. Load output was combined using a sum-of-squares technique. Passive flexion was performed with the arm in the varus and valgus orientations; passive and active flexion were performed with the arm in the vertical orientation. Results: With the arm (humerus) in the vertical orientation, bending loads increased between 418Nmm and 1618Nmm for all malaligned implant positions (p< 0.05). Passive flexion (1354±859Nmm) produced higher resultant loads for the optimally positioned implant than active (819±891Nmm) flexion (p< 0.05). Although it varied during flexion, loading with the arm in varus (2928±1273Nmm) or valgus (2494±743Nmm) orientations resulted in up to a three-fold increase in loading when compared to the vertical orientation (p< 0.01). Conclusion: These data demonstrate that humeral component malpositioning increases loading in the implant, however further studies are required to determine the long term effect on polyethylene wear and component loosening. Prosthesis designs that replicate the native flexion-extension axis and make use of sophisticated instrumentation or computer assistance to achieve precise positioning during implantation should lead to improved arthroplasty durability. Also, loading was higher with the arm in varus or valgus orientations, suggesting that patients should avoid activities post-operatively that require their elbow to be positioned in this way


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 616 - 616
1 Oct 2010
Heyse T Becher C Fuchs-Winkelmann S Hurschler C Kron N Markus S Ostermeier S Tibesku C
Full Access

Objective: Decreased quadriceps strength may contribute to anterior knee pain after total knee arthroplasty (TKA). The quadriceps force necessary to establish full extension is strongly dependent on the position and the relative length of the lever arms over the knee joint. The purpose of this in vitro study was to investigate the amount of quadriceps force required to extend the knee isokinetically after TKA in dependence of different prosthesis designs and the state of the posterior cruciate ligament (PCL). Methods: Eight fresh frozen human knee specimens were tested in a kinematic device that simulated an isokinetic knee extension cycle from 120° of flexion to full extension. Knee motion was driven by a hydraulic cylinder applying sufficient force to the quadriceps tendon to produce an extension moment of 31 Nm. The quadriceps force was measured using a load cell attached to the quadriceps tendon after implantation of a cruciate retaining (CR) TKA (Genesis II, Smith& Nephew, Memphis, Tn, USA) applying a conventional and a highly conforming polyethylene (PE) inlay before and after resection of the PCL. Finally, the femoral component of the CR TKA was replaced by a posterior stabilized (PS) design and measurements were redone. Results: No significant differences in the average quadriceps force were detected between the different PCL retaining inlays (CR, highly conforming) as long as the PCL was intact. However, after resection of the PCL, the required quadriceps force increased significantly for both designs (CR: 4.7%, p < 0.01, Highly conforming: 3.5%, p < 0.03). After implantation of the PS femoral component quad force decreased to its initial levels with forces significantly lower compared to the PCL deficient knees provided with a CR (−6.0%, p < 0.01) or highly conforming (−5.1%, p < 0.01) inlay. With a PS design average quadriceps extension force was not significantly different from cruciate retaining TKA inlays at an intact PCL. Conclusions: The data of this in vitro study suggest that the quadriceps extension force is significantly higher for knees after cruciate retaining TKA with PCL deficiency, independent of the use of a CR or DD inlay. Thus, the integrity of the PCL should be secured in clinical practice when using a cruciate preserving TKA design


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 171 - 172
1 May 2011
Johanson P Fenstad A Furnes O Garellick G Havelin L Herberts P Overgaard S Pedersen A Kärrholm J
Full Access

Introduction: There is an increasing interest in surface replacement arthroplasty (SRA) as an alternative to conventional THA (cTHA) in young and active patients. However, there has been considerable variability in reported outcomes. National joint registry reports have shown increased revision rates compared to cTHA. We analysed outcome measured as non-septic revision rate within two years for SRA in the NARA data base (Nordic Arthroplasty Register Association). Materials and Methods: 1638 SRA and 163802 cTHA with age up to 73 years and a non-fracture diagnosis, operated from 1995 to 2007, were compared using Cox multiple regression including age, gender, diagnosis, nation and prosthesis type with cTHA divided into cemented, uncemented, hybrid and reversed hybrid fixation. Men below 50 years of age (460 SRA and 7185 cTHA) were analysed as a subset. The SRA cohort with a mean follow-up 1,8 years was also analysed with the same method including age, gender, diagnosis, number of performed SRA per hospital and the four most commonly used prosthesis designs. In an additional analysis femoral head diameter was added, reducing the number of cases to 1552. results are presented as relative risk (RR) with 95 % confidence interval(CI). Results: SRA had a more than twofold increased revision risk compared to cTHA, RR=2,50 (1,67–3,70), which increased to 3,63 (2,42–5,44) when compared with all cemented THA. In the subpopulation of men below 50 years of age, there was no difference between SRA and any of the cTHA cathegories. Within the SRA group RR was reduced by male gender, RR=0,46 (0,25–0,86), in hospital performing > 70 SRA (RR=0,26, 0,11–0,60) and with use of BHR (Birmingham Hip Resurfacing) compared to all other designs (RR=0,27, 0,12–0,61). The size of the femoral head diameter had no significant influence on the early revision rate. Discussion and Conclusion: Surface replacement arthroplasty has an increased risk of early revision compared to conventional and cemented THA except for men below 50 years of age. There is a learning curve on the hospital level. Cases with secondary osteoarthritis were comparatively few and were mainly caused by pediatric hip disease. SRA might become an alternative for young men, but our follow up is too short to determine if this indication remains in the longer perspective


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 451 - 451
1 Sep 2009
Ooms E Pilot P van Doorn W Nelissen R Deijkers R
Full Access

Aseptic loosening of the total TMC joint prosthesis occurs frequently and may depend on the design of the prosthesis. Numerous TMC prosthesis designs are available, and new designs are being developed and tested. One of the problems in the clinical studies of TMC prostheses is identifying and predicting prosthetic loosening at an early stage. Roentgen Stereophotogrammetric Analysis (RSA). allows assessment of three-dimensional micromotion of orthopaedic implants with high accuracy. Early micromotion (in the first two postoperative years) of most prostheses is strongly correlated with the development of aseptic loosening. We studied if RSA assessment was possible after total TMC joint arthroplasty. In five cadaveric hands the TMC joint was replaced by the SR-TMC prosthesis. Tantalum beads of 0.8 mm were implanted in the trapezium and first metacarpal bone without extending the standard surgical exposure. The metacarpal prosthesis component was provided with 0.5 mm beads. A three-dimensional surface model of the trapezium component of the SR-TMC prosthesis was prepared to facilitate model-based RSA. After the surgical procedure, RSA radiographs were made of all hands in two commonly used positions for imaging of the TMC joint. The number of visually detected markers for each bone/implant was recorded. Of one cadaver hand, RSA radiographs were made in ten different positions to calculate the measurement error of the performed technique. For the metacarpal bone, all beads were visible in all positions and both (L+R) RSA radiographs. For beads in the polyethylene metacarpal prosthesis component three beads seem sufficient, however in exceptional cases the most proximal placed bead might be invisible due to overprojection by the metal trapezium prosthesis component. Therefore the X-rays should be carefully checked at the radiology department before the patient leaves the ward. Alternatively, an extra bead can be placed in the prosthesis, although this is a lesser option due to possible weakening of the component caused by the placement of the beads. The use of different sizes of beads (0.5/0.8 mm) in the metacarpal bone and metacarpal prosthesis made the interpretation for the analyser easier. The accuracy analysis is currently carried out. First results of these measurements are promising and placement of tantalum beads for RSA analysis during TMC-joint replacement seems feasible


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 37 - 37
1 Sep 2012
Patil S Manning M Mizu-uchi H Ezzet K D'Lima D
Full Access

Introduction. It is well known that total knee arthroplasty (TKA) does not preserve normal knee kinematics. This outcome has been attributed to alteration of soft-tissue balance and differences between the geometry of the implant design and the normal articular surfaces. Bicompartmental knee arthroplasty (BKA) has been developed to replace the medial and anterior compartments, while preserving the lateral compartment, the anterior cruciate ligament (ACL), and the posterior cruciate ligament (PCL). In a previous study, we reported that unicompartmental knee arthroplasty did not significantly change knee kinematics and attributed that finding to a combination of preservation of soft-tissue balance and minimal alteration of joint articular geometry (Patil, JBJS, 2007). In the present study, we analyzed the effect of replacing trochlear surface in addition to the medial compartment by implanting cadaver knees with a bicompartmental arthroplasty design. Our hypothesis was that kinematics after BCKA will more closely replicate normal kinematics than kinematics after TKA. Methods. Eight human cadaveric knees underwent kinematic analysis with a surgical navigation system. Each knee was evaluated in its normal intact state, then after BKA with the Deuce design (Smith & Nephew, Memphis, TN), then after ACL sacrifice, and finally after implanting a PCL-retaining TKA (Legion, Smith & Nephew). Knees were tested on the Oxford knee rig, which simulates a quadriceps-driven dynamic deep knee bend. Tibiofemoral rollback and rotation and patellofemoral shift and tilt were recorded for each condition and compared using repeated measures ANOVA for significance. Results. Statistically significant differences were noted in femoral rollback between TKA and Intact conditions but not between Intact and BKA or between Intact and BKA without ACL. Statistically significant differences were noted in tibiofemoral rotation between TKA and Intact conditions but not between Intact and BKA or between Intact and BKA without ACL. No significant differences in patellar lateral shift or lateral tilt were found among the four conditions tested. Discussion & Conclusion. BKA prostheses that preserve the ACL and PCL allow for more normal knee kinematics than does conventional TKA. Our results supported our primary hypothesis that a bicompartmental approach would not significantly alter knee kinematics. These results also imply that replacement of the medial compartment and trochlear surface are not major factors contributing to altered knee function. The results that we observed may not necessarily apply to other BKA designs and should therefore not be extrapolated beyond the prosthesis designs in this study. Additionally, the current study was designed to only evaluate kinematics, and we can not make conclusions regarding implant wear, fixation, durability, ideal patient selection, and reproducibility of successful clinical outcomes. Lastly, the current study was undertaken using relatively normal cadaveric knees whereas in vivo arthroplasty is typically reserved for arthritic knees that are often affected by contracture and/or deformity. We therefore believe that clinical studies with well-defined measures of success need to be conducted before far-reaching conclusions can be drawn regarding the utility of these implants in clinical practice


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 1 - 1
1 Jul 2014
Gao B Angibaud L
Full Access

Summary Statement. Femorotibial constraint is a key property of a total knee arthroplasty (TKA) prosthesis and should reflect the intended function of the device. With a validated simulation methodology, this study evaluated the constraint of two TKA prostheses designed for different intentions. Introduction. TKA prostheses are semi-constrained artificial joints. Femorotibial constraint level is a major property of a prosthesis and should be designed to match the device's intended function. Cruciate Retaining (CR) prostheses are usually indicated for patients with a functioning posterior cruciate ligament (PCL). For patients without a fully functioning PCL, CR-Constrained (CRC) prostheses with additional built-in constraint may be indicated. A CRC prosthesis usually consists of a CR femoral component and a tibial insert which has a more conforming sagittal profile to offer an increased femorotibial constraint. This study evaluated the anterior-posterior (AP) constraint behavior of two lines of prostheses (CR and CRC) from a same TKA product family. Using a validated computer simulation approach, multiple sizes of each product line were evaluated. Methods. Both the CR and CRC prostheses are from the same TKA product family (Optetrak Logic, Exactech, FL, USA) and share identical femoral components and tibial baseplates. The CRC tibial inserts have a more conforming sagittal profile than the CR tibial inserts, especially in the anterior aspect. Three sizes (sizes 1, 3, and 5) from each product line were included in this study. Computer simulations using finite element analysis (FEA) were performed to evaluate the femorotibial constraint of each prosthesis per ASTM F1223 standard [1]. The simulation has been validated by comparison with physical testing (more details submitted in a separate paper to CORS 2013). Briefly, FEA models were created using 10-node tetrahedral elements with all materials considered linear elastic. The tibial baseplate was distally fixed and a constant compressive force (710 N) was applied to the femoral component. Nonlinear Surface-Surface-Contact was established at the articulating surfaces, as well as between the tibial insert and the tibial baseplate. A coefficient of friction of 0.1 was assumed for all articulations [2]. The femoral component was driven under a displacement-controlled scheme to slide along AP direction on the tibial insert. Constraint force occurring at the articulation was derived from the reaction force at the distal fixation; thus, the force-displacement curve can be plotted to characterise the constraint behavior of the prosthesis. A nonlinear FEA solver (NX Nastran SOL601, Siemens, TX, USA) was used to solve the simulations. Results. The force-displacement curves predicted by the simulation exhibited the hysteresis loop appearance for both CR and CRC prostheses. The profile of the curves was generally consistent across different sizes for both product lines. The anterior constraint of the CRC prosthesis was significantly greater than the CR prosthesis. The posterior constraint of the CRC prosthesis was also slightly greater. Larger sizes exhibited reduced constraint compared to smaller sizes. Discussion/Conclusion. The increased constraint of the CRC prosthesis revealed in the study is consistent with the geometrical characteristics and the functional intent of the device. The CRC tibial insert is expected to provide significantly greater anterior constraint than the CR prosthesis to prevent paradoxical femoral translation when the patient's PCL is not fully functioning. The CRC tibial insert is also expected to provide slightly increased posterior constraint due to its elevated posterior lip. The observed hysteresis loop appearance is consistent with physical testing and the existence of friction. The reduced constraint on larger sizes is functionally desirable to offer proportional translation freedom. This study demonstrated the effectiveness of the simulation approach in quantifying the constraint behavior of different TKA prosthesis designs