Advertisement for orthosearch.org.uk
Results 1 - 20 of 59
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 106 - 106
1 Feb 2020
Wise C Oladokun A Maag C
Full Access

Introduction. Femoral neck impingement occurs clinically in total hip replacements (THR) when the acetabular liner articulates against the neck of a femoral stem prosthesis. This may occur in vivo due to factors such as prostheses design, patient anatomical variation, and/or surgical malpositioning, and may be linked to joint instability, unexplained pain, and dislocation. The Standard Test Method for Impingement of Acetabular Prostheses, ASTM F2582 −14, may be used to evaluate acetabular component fatigue and deformation under repeated impingement conditions. It is worth noting that while femoral neck impingement is a clinical observation, relative motions and loading conditions used in ASTM F2582-14 do not replicate in vivo mechanisms. As written, ASTM F2582-14 covers failure mechanism assessment for acetabular liners of multiple designs, materials, and sizes. This study investigates differences observed in the implied and executed kinematics described in ASTM F2582-14 using a Prosim electromechanical hip simulator (Simulation Solutions, Stockport, Greater Manchester) and an AMTI hydraulic 12-station hip simulator (AMTI, Watertown, MA). Method. Neck impingement testing per ASTM F2582-14 was carried out on four groups of artificially aged acetabular liners (per ASTM F2003-15) made from GUR 1020 UHMWPE which was re-melted and cross-linked at 7.5 Mrad. Group A (n=3) and B (n=3) consisted of 28mm diameter femoral heads articulating on 28mm ID × 44mm OD acetabular liners. Group C (n=3) and D (n=3) consisted of 40mm diameter femoral heads articulating on lipped 40mm ID × 56mm OD 10° face changing acetabular liners. All acetabular liners were tested in production equivalent shell-fixtures mounted at 0° initial inclination angle. Femoral stems were potted in resin to fit respective simulator test fixtures. Testing was conducted in bovine serum diluted to 18mg/mL protein content supplemented with sodium azide and EDTA. Groups A and C were tested on a Prosim; Groups B and D were tested on an AMTI. Physical examination and coordination measurement machine (CMM) analyses were conducted on all liners pre-test and at 0.2 million cycle intervals to monitor possible failure mechanisms. Testing was conducted for 1.0 million cycles or until failure. An Abaqus/Explicit model was created to investigate relative motions and contact areas resulting from initial impingement kinematics for each test group. Results. Effects of kinematic differences in the execution of ASTM F2582-14 were observed in the four groups based on simulator type (Figure 1) and liner design. The Abaqus/Explicit FEA model revealed notable differences in relative motions and contact points (Figure 2) between specimen components i.e. acetabular liner, femoral head, and femoral stem throughout range of motion. Acetabular liner angular change within shell-fixtures, rim deformation, crack propagation, and metal-on-metal contact between acetabular shell-fixtures and femoral stems were observed as potential failure mechanisms (Figure 3) throughout testing. These mechanisms varied in severity by group due to differing contact stresses and simulator constraints. Significance. Investigating failure mechanisms caused by altered kinematics of in-vitro neck impingement testing, due to influences of simulator type and acetabular liner design, may aid understanding of failure mechanisms involved when assessing complaints/retrievals and influence future prosthetic designs. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 10 - 10
1 Apr 2022
Baumgart R
Full Access

Introduction

“Bioexpandable” prostheses after resection of malignant bone tumors in children to lengthen the bone using the method of callus distraction may offer new perspectives and better long-term results.

Materials and Methods

The bioexpandable prosthesis is equipped with an encapsulated electromotor which enables the device to perform distraction in an osteotomy gap with about 1mm/day. The new bone is improving the ratio from bone to prosthesis and therewith the potential stability of the final stem. The device is indicated, when limb length discrepancy is getting more than 3 cm or at maturity and can be used in a minimal invasive way for femur lengthening.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 31 - 31
1 Apr 2019
Elkabbani M El-Sayed MA Tarabichi S Schulte M
Full Access

The objective of this study was to evaluate the short term clinical and radiological results of a new short stem hip implant. In 29 consecutive patients suffering from osteoarthritis with 33 affected hip joints, the clinical and radiological results of 33 cementless hip arthroplasties using a cementless implanted short stem prosthesis type Aida and a cementless cup type Ecofit were evaluated prospectively between October 2009 and June 2015 in two hospitals. The median age of patients at time of surgery was 55 years (range, 30–71 years), 23 male and 10 female patients were included in the study. The median clinical follow up was 24 months (range, 1.5–51 months), and the median radiological follow up was 12 months (range, 1–51 months). Two patients were lost to follow up and two patients had only one immediate postoperative x- ray. The Harris Hip Score improved from a median preoperative value of 53 to a median postoperative value of 93 at follow up. Radiological analysis showed that 19 stems (58%) showed stable bony ingrowth, five cases (15%) showed stable fibrous ingrowth. Four cases need further follow up for proper evaluation of stem fixation. The short term survival of this new short stem is very promising, and achieving the goals of standard hip arthroplasty.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 45 - 45
1 Apr 2019
Joyce T Giddins G
Full Access

Objective

We explanted NeuFlex metacarpophalangeal (MP) joint prostheses to identify common features, such as position of fracture, and thus better understand the reasons for implant failure.

Methods

Explanted NeuFlex MP joint prostheses were retrieved as part of an-ongoing implant retrieval programme. Following revision MP joint surgery the implants were cleaned and sent for assessment. Ethical advice was sought but not required. The explants were photographed. The position of fracture, if any, was noted. Patient demographics were recorded.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 15 - 15
1 Dec 2017
Gelderman SJ Jutte PC Boellaard R Kampinga GA Ploegmakers JJ Glaudemans AWJM Wouthuyzen-Bakker M
Full Access

Aim

Diagnosing a prosthetic joint infection (PJI) can be difficult. Several imaging modalities are available, but the choice which technique to use is often based on local expertise, availability and costs. Some centers prefer to use 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) as first imaging modality of choice, but due to a lack of accurate interpretation criteria, FDG-PET is currently not routinely applied for diagnosing PJI. With FDG-PET it is difficult to differentiate between FDG uptake due to reactive inflammation and uptake due to an infection. Since the physiological uptake pattern around a joint prosthesis is not fully elucidated, the aim of this study was to determine: i) the FDG uptake pattern in non-infected total hip prostheses and, ii) to evaluate whether there is a difference in uptake between cemented and non-cemented prostheses.

Method

Patients with a primary total hip arthroplasty (1995–2016) without clinical signs of an infection that underwent a FDG-PET for another indication (mainly suspicion of malignancy) were included and retrospectively analysed. Patients in whom the prosthesis was implanted < 6 months prior to FDG-PET were excluded, to avoid post-surgical effects. Scans were visually and quantitatively analysed. Quantitative analysis was performed by calculating maximum and peak standardized uptake values (SUVmax and SUVpeak) by volume of interests (VOIs) at eight different locations around the prosthesis, from which the mean SUV was calculated. SUV was standardized by the liver SUV that was taken as background.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 60 - 60
1 Feb 2021
Lustig S Batailler C Servien E Foissey C
Full Access

Introduction

Increasingly young and active patients are concerned about revision arthroplasty forcing the manufacturers to think about revision prostheses that fit to this population while meeting the indications and fitting with bone losses and ligament deficiencies. One of those industrials claims that its system allows the surgeon to rise the constraint from a posterior stabilized (PS) prostheses to a semi-constraint total stabilized (TS) prostheses without modifying the gait pattern thanks to a similar single radius design. The aim of the study was to compare gait parameters in patients receiving either PS or TS knee prostheses.

Methods

Nineteen patients in each groups were prospectively collected for this study and compared between each other. All subjects were assessed with a 3D knee kinematics analysis, performed with an optoelectronic knee assessment device (KneeKG®). Were measured for each knees range of motion (ROM) in flexion–extension, abduction–adduction, internal–external rotation and anterior–posterior displacement.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_15 | Pages 58 - 58
1 Dec 2015
Duijf S Telgt D Nijsse B Meis J Goosen J
Full Access

Prosthetic joint infections (PJI) caused by Streptococcus species are relatively common.

The aim of our study was to assess outcome after treatment for early and late PJI with Streptococcus species after a follow-up of two years.

For this study we retrospectively included all patients with primary or revision total knee arthroplasty (TKA) or total hip (THA) arthroplasty, a minimum of two periprosthetic tissue cultures positive for Streptococcus species and a minimum follow-up of one year. According to international guidelines patients were classified as having early or late PJI. All patients with an early PJI were treated according to a standard treatment protocol, i.e. debridement and retention of the prosthesis, followed by adequate antibiotic therapy. Patients with late PJI underwent a debridement followed by adequate antibiotic therapy or joint revision. Patients’ hospital records were reviewed and we evaluated the status of the original prosthesis after an infection.

Forty cases were included; 24 early and 16 late PJI. For early PJI, open debridement was performed in all patients, after a mean of 19 (range: 9 – 80) days. At final follow-up 21 prostheses (88%) were still in situ and without clinical signs of infection. Eight cases (41%) of late PJI were successfully treated with debridement and retention. Nine patients (59%) underwent a one- or two-stage revision. At final follow-up 16 patients (100%) with late PJI had a prosthesis in situ. Streptococcus dysgalactiae species accounted for more than 50% of the early infections, followed by Streptococcus agalactiae with 30%.

In case of PJI with Streptococcus species open debridement and retention of the prosthesis should be performed followed by adequate and long-term antibiotic treatment. As expected, the retention rate for early PJI is much higher than that for late PJI.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 49 - 49
1 Dec 2019
Giordano G Krin G Portet Y Bouige A Fourcade C Bonnet E
Full Access

Aims

To evaluate the place of the massive prostheses in the most complex periprosthetic infections cases (PJis).

Method

Between 2011 and 2017, 516 hip and knee revisions for periprosthetic infections had been performed in our hospital by the same senior surgeon. We report a prospective series of 58 patients treated between 2011 and the end of 2017. 26 males and 32 females with on average 69,4 years old (38–86). Infection involved TKA in 39 cases (26 TKA revisions, 11 primary TKA), THA in 18 cases (10 revisions, 7 primary THA), a femoral pseudoarthrosis with posttraumatic gonarthrosis in one case and a septic humeral pseudoarthrosis in one case.

We used one stage procedures in 38 cases (14 hips, 23 knees, 1 shoulder) and 20 two stages surgeries (16 knees and 4 hips). Additional technics used with massive prostheses, all for TKA PJis: 4 massive extensor systemallografts performed two times in a one stage procedure, two local flaps (medial gastronecmienmuscle). Two perioperative hyperbaric procedures used to limit the risks of wound complications.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 142 - 142
1 Feb 2017
Matsumoto Y Hirakawa M Ikeda S Nagashima Y Tsumura H
Full Access

Summary

The posterolateral overhang of the femoral component was measured using 3-D templating software. Rounded and reduced shape of the posterolateral corner in the femoral component would be beneficial.

Introduction

In total knee arthroplasty, patients sometimes have pain in the posterolateral part of the knee. One possible cause is the impingement of the popliteus tendon against femoral components. In the literature, the incidence has been reported to be 1–4%. The purpose of this study was to compare of two prostheses on the amount of posterolateral overhang of the femoral component using Three-dimensional (3-D) templating software.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 33 - 33
1 May 2016
Baxmann M Pfaff A Grupp T Morlock M
Full Access

Introduction

Dual modular hip prostheses were introduced to optimize the individual and intra-surgical adaptation of the implant design to the native anatomics und biomechanics of the hip. The downside of a modular implant design with an additional modular interface is the potential susceptibility to fretting, crevice corrosion and wear [1–2]. The purpose of this study was to characterize the metal ion release of a modular hip implant system with different modular junctions and material combinations in consideration of the corrosive physiological environment.

Methods

One design of a dual modular hip prosthesis (Ti6Al4V, Metha®, Aesculap AG, Germany) with a high offset neck adapter (CoCrMo, CCD-angle of 130°, neutral antetorsion) and a monobloc prosthesis (stem size 4) of the same implant type were used to characterize the metal ion release of modular and non-modular hip implants. Stems were embedded in PMMA with 10° adduction and 9° flexion according to ISO 7206-6 and assembled with ceramic (Biolox® delta) or CoCrMo femoral heads (XL-offset) by three light impacts with a hammer. All implant options were tested in four different test fluids: Ringer's solution, bovine calf serum and iron chloride solution (FeCl3-concentration: 10 g/L and 114 g/L). Cyclic axial sinusoidal compressive load (Fmax = 3800 N, peak load level of walking based on in vivo force measurements [3]) was applied for 10 million cycles using a servohydraulic testing machine (MTS MiniBionix 370). The test frequency was continuously varied between 15 Hz (9900 cycles) followed by 1 Hz (100 cycles). The metal ion concentration (cobalt, chromium and titanium) of the test fluids were analysed using ICP-OES and ICP-MS at intervals of 0, 5·105, 2·106 and 10·106 cycles (measuring sensitivity < 1 µg/L).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 17 - 17
1 Sep 2012
Bone M Lord J Patil S Partington P Joyce T
Full Access

Background

Hemiarthroplasty of the hip involves the replacement of the femoral side of the joint with a metal prosthesis, resulting in metal-on-cartilage articulation. The two most common types of hemiarthroplasty used are the Austin Moore and the Thomson, both of which are available in either Titanium (Ti) or cobalt chromium (CoCr). Hemiarthroplasty may be more cost effective in elderly patients who have lower life expectancy and are less active.

Materials and Methods

Three Ti and two CoCr hemiarthroplasty components were obtained following revision surgery. Four had an articulating diameter of 44mm and the other was 46mm diameter. These five hemiarthroplasties were analysed using a Mitutoyo LEGEX322 co-ordinate measuring machine (CMM) (manufacturer's claimed scanning accuracy of 0.8μm). In each case a wear map was generated and the wear volume from the articulating surface was calculated using a bespoke MATLAB program.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 36 - 36
1 Apr 2018
Falkenberg A Morlock M Huber G
Full Access

Introduction

Clinical symptoms arising from corrosion within taper junctions of modular total hip prostheses are of increasing concern [1]. In particular, bi-modular implant designs showed increased failure rates due to wear originating from the neck-stem junction [2]. In-vivo corrosion-related failure is less frequently observed for head-stem junctions [3]. It is hypothesized that fretting and crevice corrosion are associated with micromotions between the mating surfaces of a taper junction [4]. The aim of this study was to measure micromotion occurring within a head-stem junction of a conventional prosthesis and clarify by how much it is exceeded in a neck-stem junction of a bi-modular prosthesis that exhibited severe corrosion and early implant failure.

Material & Methods

The micromotions within two taper articulations were investigated: a head-stem taper (Corail, DePuy Synthes, Leeds, UK, Figure 1) and a neck-stem taper of a bi-modular THA prosthesis (Rejuvenate, Stryker, Kalamazoo, MI, USA). Both tapers were assembled with 2000 N. Loading at an angle of 50° to the taper axes (identical for both) in direction of the stem axis was incrementally increased from 0 N to 1900 N (n=3). Small windows (< 2.5 mm2) were cut through the female tapers by electric discharge machining, exposing the male taper surface for direct micromotion measurements by microscopic topographic measurements (Infinite Focus Microscope, Alicona Imaging GmbH, Austria). Subsequently, feature matching of the images from the differently loaded implants was applied (Matlab 2016b, The MathWorks Inc., Natick, MA, USA) to determine the local relative motion between the mating surfaces.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 184 - 184
1 Mar 2013
Ghosh R Mukherjee K Gupta S
Full Access

Despite the generally inferior clinical performance of acetabular prostheses as compared to the femoral implants, the causes of acetabular component loosening and the extent to which mechanical factors play a role in the failure mechanism are not clearly understood yet. The study was aimed at investigating the load transfer and bone remodelling around the uncemented acetabular prosthesis.

The 3-D FE model of a natural right hemi-pelvis was developed using CT-scan data. The same bone was implanted with two uncemented hemispherical acetabular components, one metallic (CoCrMo alloy) and the other ceramic (Biolox delta), with 54 mm outer diameter and 48 mm bearing diameter. The FE models of the implanted pelvis (containing ∼116000 quadratic tetrahedrals) were generated using a submodelling approach, which were based on an overall full model of implanted pelvis (containing ∼217600 quadratic tetrahedrals) acted upon by hip joint force and twenty one muscle forces. The apparent density (ρ in g cm−3) of each cancellous bone element was calculated using linear calibration of CT numbers of bone, from which the Young's modulus (E in MPa) was determined using the relationship, E = 2017.3 ρ2.46 [1]. Implant-bone interface conditions, fully bonded and debonded with friction coefficient μ = 0.5, were simulated using contact elements. Applied loading conditions consist of two load cases during a gait cycle, corresponding to 13% and 52% of the walking cycle. Fixed constraints were prescribed at the pubis and at the sacroiliac joint. The bone remodelling algorithm was based on strain energy based site-specific formulation [2]. The FE analysis, in combination with the bone remodelling simulation, was performed using ANSYS FE software.

The predicted changes in peri-prosthetic bone density were similar for the metallic and the ceramic implant. For debonded implant-bone interface, stress shielding led to ∼20% reductions in bone density at supero-anterior, infero-anterior and posterior part of the acetabulum (Fig. 1). However, bone apposition was observed at the supero-posterior part of the acetabulum, where implantation led to ∼60% increase in bone density (Fig. 1). The effect of bone resorption was higher for the fully bonded implant-bone interface, wherein bone density reductions of 20–50% were observed in the cancellous bone underlying the implant (Fig. 1), which is indicative of implant loosening over time. However, implantation led to an increase in bone density around the acetabular rim for both the interface conditions (Fig. 1). These results are well corroborated by the earlier studies [3, 4]. Implantation with a ceramic component resulted in 2–7% increase in bone density at supero-posterior part of the acetabulum as compared to the metallic component, for the debonded interface condition. Considering better wear resistant properties and absence of metal ion release, results of this study suggest that the ceramic component might be a viable alternative to the metallic prosthesis.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 110 - 110
1 Feb 2017
Park I Lee M Chung K Kim K Lee S Im S Han H
Full Access

Buechel and Pappas invented a modified version of LCS RP system (Co-Cr) with light material (Titanium), axial rotation limiting bar and improved conformity. The purpose of this prospective randomized study was to compare the minimum 3-year clinical outcomes including lightness, preference, and instability between the Co-Cr implant system and the Titanium implant system in bilateral total knee arthroplasty.

We prospectively enrolled 108 patients and 20 patients were lost to follow-up. Therefore, 88 patients (176 knees; mean age, 69.9±6.0years) were included in the study. The range of motion and clinical scores such as Knee Society score (KSS), Hospital for Special Surgery score (HSS) and Western Ontario and McMaster University (WOMAC) scores were measured preoperatively and postoperatively. At each follow-up, patients also complete a Likert scale questionnaire regarding subjective pain, lightness, left-right side preference (naturalness and satisfaction) and subjective instability.

There were no significant differences in all preoperative variables between two groups (p>.05). Mean follow-up period was 46.3±8.8 (36 to 72) months. The mean weight of Titanium implants was three times lighter than that of Co-Cr implants (133.9g versus 390.1g, p<.01). At the minimum of 3-year follow-up, there were no significant differences in pain, range of motion (ROM), clinical scores including KSS, HSS, and WOMAC between both groups. Also, the study showed no significant differences with subjective pain, lightness, preference (convenience, naturalness, and satisfaction), and subjective instability between the Co-Cr protheses and the Titanium protheses (p>.05).

No differences in clinical outcomes as well as subjective side-to-side differences between the Co-Cr prostheses and the Titanium prostheses were observed in the minimum 3-year follow-up. This implies that patients do not feel differently with two different weighted implants in mid-term follow-up.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 149 - 149
1 May 2016
Zhang C Yan C Ng F Chan P Qu G
Full Access

Purpose

The success rate of surgical debridement and prostheses retention for acute periprosthetic joint infection (PJI) is controversial. This study aims to report our experience in managing acute PJI following total knee arthroplasty (TKA) with surgical debridement and prostheses retention, and to identify the prognostic factors that may influence the surgical outcomes.

Methods

A retrospective review from our prospective joint replacement register in Queen Mary Hospital, Hong Kong, of patients who were managed with surgical debridement and prosthesis retention for acute PJI after TKA between 1998 and 2013 was performed. The diagnosis of acute PJI was based on the 2011 Musculoskeletal Infection Society (MSIS) PJI diagnostic criteria. Both the early post-operative infections and the late haematogenous infections were included (Tsukayama type 2 and 3). Surgical outcomes were defined as successful if patients’ clinical symptoms had been relieved; inflammatory marker levels including C-Reactive Protein (CRP), Erythrocyte Sedimentation Rate (ESR) and White Blood Cell (WBC) count had returned to normal; X-rays showed no prosthetic loosening; and no lifelong antibiotic suppression was required. Outcomes were defined as failed if patients required any further surgeries (e.g., re-debridement, one or two-stage revision), or needed lifelong antibiotic suppression. All Patients’ perioperative data, i.e., age, primary diagnosis, pre-operative CRP, ESR, WBC, haemoglobin, albumin, glucose level, time lag from symptoms onset to debridement, synovial fluid total cell count and bacteriology were traced and recorded. SPSS 22.0 was used to calculate and compare the statistical differences between surgically successful group and failed group regarding the factors above.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 21 - 21
1 Dec 2018
Harrison C Alvand A Chan J West E Matthews P Taylor A Giele H McNally M Ramsden A
Full Access

Aim

A number of orthopaedic strategies have been described for limb salvage following periprosethic joint infection (PJI). However, this is often only possible with concomitant soft tissue reconstruction in the form of flap coverage. The purpose of this study was to determine the long-term clinical outcome of patients who underwent pedicled gastrocnemius flap coverage as part of their treatment for knee PJI.

Method

We performed a retrospective review of all patients undergoing gastrocnemius muscle transfer with split thickness skin grafting as part of their treatment for knee PJI at a tertiary referral centre between 1994 and 2015. Data recorded included patient characteristics, orthopaedic procedure, microbiology result and antimicrobial management. Outcome measures included flap failure, infection recurrence, amputation, functional outcome (Oxford knee score; OKS) and mortality.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 188 - 188
1 Dec 2013
Vanhegan I Coathup M McCarthy I Haddad F Blunn G
Full Access

Introduction

Revision hip arthroplasty is a technically challenging operation as proximal bony deficits preclude the use of standard implants. Longer distally fixing stems are therefore required to achieve primary stability.

Aims

This work aims to compare the primary stability and biomechanical properties of a new design of tapered fluted modular femoral stem (Redapt®, Smith & Nephew) to that of a conical fluted stem (Restoration®, Stryker). It is hypothesized that the taper will provide improved rotational stability under cyclical loading.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 59 - 59
1 May 2016
Jauch S Huber G Lohse T Sellenschloh K Morlock M
Full Access

Introduction

Total hip replacement is one of the most successful orthopaedic surgeries, not least because of the introduction of modular systems giving surgeons the flexibility to intraoperatively adapt the geometry of the artificial joint to the patient's anatomy. However, taper junctions of modular implants are at risk of fretting-induced postoperative complications such as corrosion, which can lead to adverse tissue reactions. Interface micro-motions are suspected to be a causal factor for mechanical loading-induced corrosion, which can require implant revision.

The aim of this study was to determine the micro-motions at the stem-head taper interface during daily activities and the influence of specific material combinations.

Materials & Methods

The ball heads (ø 32mm, 12/14, size L, CoCr or Al2O3) were quasi-statically assembled to the stems (Ti or CoCr, Metha, Aesculap AG, Germany, v=0.5 kN/s, F=6 kN, n=3 each, 10° adduction/ 9° flexion according to ISO 7206-4) and then loaded sinusoidally using a material testing machine (Mini Bionix II, MTS, USA, Figure 1). The peak forces represented different daily activities [Bergmann, 2010]: walking (2.3 kN), stair climbing (4.3 kN) and stumbling (5.3 kN). 2,000 loading cycles (f=1 Hz) were applied for each load level. Six eddy-current sensors, placed between stem and head, were used to determine the displacement (interface micro-motion and elastic deformation) between head and stem (Figure 1). A finite element model (FEM) based on CAD data was used to determine the elastic deformation of the prostheses for the experimentally tested activities (Abaqus, Simulia, USA). Tie-junctions at all interfaces prevented relative movements of the adjacent surfaces. The resultant translations at the centre of the ball head were determined using a coordinate transformation and a subsequent subtraction of the elastic deformation.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 55 - 55
1 Dec 2016
Walenkamp G Moojen DJ Hendriks H Goedendorp T Rademacher W Rozema F
Full Access

Aim

A previous Dutch guideline for prophylaxis of hematogenous PJI (HPJI) caused defensive medicine and incorrect own guidelines. There was a need for a better national guideline, developed cooperatively by orthopedic surgeons and dentist.

Method

A committee of Dutch Orthopedic and Dental Society, performed a systematic literature review to answer the question: “Is there a difference in the risk for hematogenous infection between always or never giving antibiotic prophylaxis to patients with a joint prosthesis undergoing a dental procedure”.

We included 9 papers as follows:

RCT's and systematic reviews: 539 abstracts > 33 full papers > 1 paper included.

observational studies: 289 abstracts > 12 full papers > 5 papers.

reference-to-reference: 3 papers.

The nine papers’ quality was scored according the GRADE method.

In addition we studied in non-included literature on further information about additional questions of pathophysiology, risk factors and risk procedures.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 195 - 195
1 Sep 2012
Uchijima D Hiraki Y Katori T Tanaka K Sakai R Mabuchi K
Full Access

Fluid film lubricating ability of a total hip prosthesis depends on the profile accuracies including surface-roughness or the sphericity of a head or a cup. Therefore, surface polishing is important. It was, however, difficult to polish the central portion of a cup or head using the conventional rotating machine. In the present study, we developed a polishing method combining a pendulum machine and a robotic arm. The effect of the accuracy improvement by this method was evaluated by the friction measurements on some test specimens.

Nine balls and a cup of Co-Cr-Mo alloy that were polished by a conventional process using a rotating machine were prepared for the prototype. The average diameter of the balls was 31.9648 mm with the sphericity of 0.0028 μm. The inside diameter of the cup was 31.9850 mm with the sphericity of 0.0044 μm. We combined a robotic arm and a pendulum apparatus to enable the further polishing. The ability of both automatic centering and change in the sliding direction was accomplished by this system. The sliding direction has been changed 180 times every ten degrees. The total distance of polishing was 120 m under vertical load of 100 N in a bath of saline solution containing abrasive grains of silicate of the diameter of 2μm. The surface roughness of the central portion of the cup, which is important area for the fluid film lubrication decreased from Ra 20.2 μm before the polishing to Ra 18.7 μm after the polishing.

A pendulum type friction tester was used for the assessment of the improvement of the lubricating ability by the polishing. The measurement was run over at 10 times under the conditions of the load of 600 N in a bath of saline solution. As the result, the frictional coefficients decreased from 0.1456–0.1720 before polishing to 0.1250–0.1300 after polishing. The polishing effect was, however, observed only at the specimens that radial clearances did not exceed the value of 50 μm.

The present results indicated that the surface polishing of the central portion of hip prostheses must improve the lubrication ability and the radial clearance before the finishing process should be chinked as possible.