Fractures of the clavicle are relatively common, occurring mostly in younger patients and have historically been managed non-operatively. Recent studies have shown an advantage to surgical reduction and stabilisation of clavicle fractures with significant displacement. Currently, fracture displacement is measured using simple anterior-posterior two-dimensional x-rays of the clavicle. Since displacement can occur in all three-dimensions, however, evaluation of the amount displacement can be difficult and inaccurate. The purpose of this study was to determine the view that provides the most accurate assessment. Nine CT scans of acute displaced clavicle fractures were analysed with AmiraDEV5.2.2 Imaging software. Measurements for degrees of shortening and fracture displacement of the fracture clavicle were taken. Using a segmentation and manipulation module (ITK toolkit), five digitally reconstructed radiographs (DRRs) mimicking antero-posterior x-rays were created for every CT, with each differing by
Evaluate precisely and reproducibly tridimensional positioning of bone tunnels in anterior cruciate ligament reconstructions (ACL). To propose biplanar stereoradiographic imaging as a new reference in tridimensional evaluation of ACL reconstruction (ACLR). Comparing knee 3D models issued from EOStm low-irradiation biplanar X-Ray with those issued from computed tomography (CT-Scan) high definition images will allow a bone morphological description of a previously unseen precision. We carried out the transfer of 3D models from EOStm X-Ray images obtained from 10 patients in the same reference frame with models issued from CT-Scan. Two evaluators reconstructed both pre-operative and post-operative knees, using two different stereoradiographic
Liner exchange and bone grafting are commonly used in cases of wear and osteolysis around well- fixed acetabular components in revision total hip arthroplasty. However, in total knee revision, liner exchange is a more rare option. In a multicenter study, we evaluated 22 TKAs that were revised with liner exchange and bone grafting for wear and osteolysis. All knees were well-fixed and well-aligned, and all components were modular tibial components. Osteolytic areas averaged 21.1cm2 and 7.6cm2 on AP
Liner exchange and bone grafting are commonly used in cases of wear and osteolysis around well fixed acetabular components in revision total hip arthroplasty. However, in total knee revision, liner exchange is a more rare option. In a multicenter study, we evaluated 22 TKAs that were revised with liner exchange and bone grafting for wear and osteolysis. All knees were well fixed and well aligned, and all components were modular tibial components. Osteolytic areas averaged 21.1 cm2 and 7.6 cm2 on AP
Introduction. The most common method for accurate kinematic analysis of the knee arthroplasty uses bi-planar fluoroscopy and model-based RSA. The main challenge is to have access to reverse-engineered CAD models of the implant components, if not provided by the company, making this method impractical for a clinical study involving many types or sizes of implants. An alternative could be to reconstruct the 3D primitive features of the implant, such as cylindrical pegs, flat surfaces and circular boundaries, based on their 2D
Problem. Total hip replacement (THA) is among the most common and highest total spend elective operations in the United States. However, up to 7% of patients have 90-day complications after surgery, most frequently joint dislocation that is related to poor acetabular component positioning. These complications lead to patient morbidity and mortality, as well as significant cost to the health system. As such, surgeons and hospitals value navigation technology, but existing solutions including robotics and optical navigation are costly, time-consuming, and complex to learn, resulting in limited uptake globally. Solution. Augmented reality represents a navigation solution that is rapid, accurate, intuitive, easy to learn, and does not require large and costly equipment in the operating room. In addition to providing cutting edge technology to specialty orthopedic centers, augmented reality is a very attractive solution for lower volume and smaller operative settings such as ambulatory surgery centers that cannot justify purchases of large capital equipment navigation systems. Product. HipInsight™ is an augmented reality solution for navigation of the acetabular component in THA. HipInsight is a navigation solution that includes preoperative, cloud based surgical planning based on patient imaging and surgeon preference of implants as well as intraoperative guidance for placement of the acetabular component. Once the patient specific surgical plan is generated on the cloud-based planning system, holograms showing the optimal planned position of the acetabular component are exported in holographic format to a Microsoft HoloLens 2™, which the surgeon wears during placement of the acetabular component in total hip arthroplasty. The pelvis is registered using the HipXpert™ mechanical registration device, which takes 2–3 minutes to dock in the operating room. The surgeon then is able to view the patient's anatomy and optimal placement of the acetabular component under the skin in augmented reality. The surgeon then aligns the real cup impactor with the augmented reality
Introduction. Studies show that cup malpositioning using conventional techniques occurs in 50 to 74% of cases defined. Assessment of the utility of improved methods of placing acetabular components depends upon the accuracy of the method of measuring component positioning postoperatively. The current study reports on our preliminary experience assessing the accuracy of EOS images and application specific software to assess cup orientation as compared to CT. Methods. Eighteen patients with eighteen unilateral THA had pre-operative EOS images were obtained for preoperative assessment of leg-length difference and standing pelvic tilt. All of these patients also had preoperative CT imaging for surgical navigation of cup placement. This allows us to compare cup orientation as measured by CT to cup orientation as measured using the EOS images. Application specific software modules were developed to measure cup orientation using both CT and EOS images (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). Using CT, cup orientation was determined by identifying Anterior Pelvic Plane coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module allows for creation of a plane parallel with the opening plane of the acetabulum and subsequent calculation of plane orientation in the AP Plane coordinate space according to Murray's definitions of operative anteversion and operative inclination. Using EOS DICOM images, spatial information from the images were used to reconstruct the fan beam
Pedicle screw fixation is a technically demanding procedure with potential difficulties and reoperation rates are currently on the order of 11%. The most common intraoperative practice for position assessment of pedicle screws is biplanar fluoroscopic imaging that is limited to two- dimensions and is associated to low accuracies. We have previously introduced a full-dimensional position assessment framework based on registering intraoperative X-rays to preoperative volumetric images with sufficient accuracies. However, the framework requires a semi-manual process of pedicle screw segmentation and the intraoperative X-rays have to be taken from defined positions in space in order to avoid pedicle screws' head occlusion. This motivated us to develop advancements to the system to achieve higher levels of automation in the hope of higher clinical feasibility. In this study, we developed an automatic segmentation and X-ray adequacy assessment protocol. An artificial neural network was trained on a dataset that included a number of digitally reconstructed radiographs representing pedicle screw
Introduction. Navigated freehand cutting (NFC) technology simplifies bone cutting in laboratory trials by directly navigating implants and power tools [1]. Experiments showed that NFC bone cutting was faster than with conventional jigs. However, most delays occurred at the start of each cut [2]. Therefore, we further reduced starting times and gained more accuracy with a NaviPen and a ‘smart’ NaviPrinter [3]. There were used to physically mark a line on the bone surface indicating where each cut should start. (Fig. 1). Further gains are targeted with our introduction of the On-Tool Marker (OTM); a touch-less laser marking technology as a standalone device or mounted on the cutting instrument (e.g. on the saw). The OTM points the desired cut by projecting a laser image on the bone. That image (usually a line or cross) changes dynamically, so that for any given cut the line
The design of every post-surgical knee arthroplasty study begins with the question “How soon after surgery should we assess the patients?”. The consensus, based primarily upon clinical rating systems, is that patients' scores reach a plateau roughly one year after surgery, and that observations performed at that time should be indicative of the long-term behavior of the joint. This is satisfactory for long-term studies of clinical performance. However, when new devices are introduced there is a need to determine as quickly as possible if the device performs as designed. Waiting a year or more after surgery to characterize a device's performance may place additional patients at risk of receiving an inferior design, or may delay widespread availability of a superior design. The goal of this study was to assess knee arthroplasty patients at 6–12 weeks, 6 months and 1 year after surgery to determine if their tibiofemoral kinematics changed during functional activities. A total of 13 patients (7 female) were recruited from an ongoing clinical study to participate in this IRB-approved sub-study. All subjects received fixed-bearing, cemented, posterior-cruciate-retaining total knee arthroplasty of the same design from a single surgeon. Subjects averaged 69 years, 169cm tall, and 28 BMI. Subjects were studied at 6–12 weeks, at 6 months and at 12 months post-surgery, when they showed an average clinical flexion of 106°, 113° and 115°, respectively. Subjects' knees were observed using pulsed-flat-panel-fluoroscopy during three activities: lunging to maximum flexion with their foot placed on a 20cm step, kneeling to maximum flexion on a padded bench, and step-up/down on a 20cm step without progression of the contralateral limb. Model-image registration was used to register 3D geometric models of the implants with their radiographic
Background. Artificial total knee designs have revolutionized over time, yet 20% of the population still report dissatisfaction. The standard implants fail to replicate native knee kinematic functionality due to mismatch of condylar surfaces and non-anatomically placed implantation. (Daggett et al 2016; Saigo et al 2017). It is essential that the implant surface matches the native knee to prevent Instability and soft tissue impingement. Our goal is to use computational modeling to determine the ideal shapes and orientations of anatomically-shaped components and test the accuracy of fit of component surfaces. Methods. One hundred MRI scans of knees with early osteoarthritis were obtained from the NIH Osteoarthritis Initiative, converted into 3D meshes, and aligned via an anatomic coordinate system algorithm. Geomagic Design X software was used to determine the average anterior-posterior (AP) length. Each knee was then scaled in three dimensions to match the average AP length. Geomagic's least-squares algorithm was used to create an average surface model. This method was validated by generating a statistical shaped model using principal component analysis (PCA) to compare to the least square's method. The averaged knee surface was used to design component system sizing schemes of 1, 3, 5, and 7 (fig 1). A further fifty arthritic knees were modeled to test the accuracy of fit for all component sizing schemes. Standard deviation maps were created using Geomagic to analyze the error of fit of the implant surface compared to the native femur surface. Results. The average shape model derived from Principal Component Analysis had a discrepancy of 0.01mm and a standard deviation of 0.05mm when compared to Geomagic least squares. The bearing surfaces showed a very close fit within both models with minimal errors at the sides of the epicondylar line (fig 2). The surface components were lined up posteriorly and distally on the 50 femurs. Statistical Analysis of the mesh deviation maps between the femoral condylar surface and the components showed a decrease in deviation with a larger number of sizes reducing from 1.5 mm for a 1-size system to 0.88 mm for a 7-size system (table 1). The femoral components of a 5 or 7-size system showed the best fit less than 1mm. The main mismatch was on the superior patella flange, with maximum
Perthes disease is a childhood disorder often resulting in femoral head deformity. Categorical/dichotomous outcomes of deformity are typical clinically, however quantitative, continuous measures, such as Sphericity Deviation Score (SDS), are critical for studying interventions. SDS uses radiographs in two planes to quantify femoral head deformity. Limitations of SDS may include non-orthogonal planes and lost details due to
INTRODUCTION. An accelerometer-based portable navigation system (KneeAlign2, OrthAlign Inc., Aliso Viejo, CA) is expected to improve mechanical axis and component alignment compared to conventional instrumentation in total knee arthroplasty (TKA). However, past reports have evaluated its accuracy using only radiographic measurements. The purpose of this study was to analyze the accuracy of the KneeAlign2 system with radiography and more detailed three-dimensional (3D) CT. METHODS. We targeted 22 patients (24 knees) with severe osteoarthritis who underwent primary TKA using the KneeAlign2 system. Cemented, fixed-bearing, cruciate-retaining prostheses were implanted in all patients. We used postoperative standing-position full-length radiographic evaluation of the lower limbs to measure the hip-knee-ankle angle (HKA), frontal femoral component angle (FFC), and frontal tibial component angle (FTC). However, lower limb rotation and knee flexion could affect radiographic measurement of HKA and the component positioning angle. We used 3D bone models reconstructed from pre- and postoperative CT images to precisely analyze the 3D component positioning. For a 3D matching bone model made from these models, a 2D
Up to 20 percent of patients remain dissatisfied after primary total knee arthroplasty (TKA) surgery. Understanding the reasons for dissatisfaction post TKA may allow for better patient selection and optimized treatment for those who remain dissatisfied. The association between function, mobility and satisfaction are not well understood. The purpose of this study was to investigate the association between post-TKA satisfaction and i) pre-operative, ii) post-operative, and iii) change in knee joint function during gait. Thirty-one patients scheduled to receive primary TKA for knee osteoarthritis (OA) diagnosis were recruited and visited the Dynamics of Human Motion laboratory for instrumented walking gait analysis (using a synchronized NDI Optotrak motion capture system and AMTI force platforms in the walkway) at two time points, first within the week prior to their surgery, and second at approximately one year after surgery. At their post-operative visit, patients were asked to indicate their satisfaction with their knee prosthesis on a scale from zero to 100, with zero being totally unsatisfied and 100 being completely satisfied. Knee joint mechanics during gait at both time points were characterized by discriminant scores, the
Bone remodeling effects is a significant issue in predicting long term stability of hip arthroplasty. It has been frequently observed around the femoral components especially with the implantation of prosthesis stem. Presence of the stiffer materials into the femur has altering the stress distribution and induces changes in the architecture of the bone. Phenomenon of bone resorption and bone thickening are the common reaction in total hip arthroplasty (THA) which leading to stem loosening and instability. The objectives of this study are (i) to develop inhomogeneous model of lower limbs with hip osteoarthritis and THA and (ii) to predict the bone resorption behavior of lower limbs for both cases. Biomechanical evaluations of lower limbs are established using the finite element method in predicting bone remodeling process. Lower limbs CT-based data of 79 years old female with hip osteoarthritis (OA) are used in constructing three dimensional inhomogenous models. The FE model of lower limbs was consisted of sacrum, left and right ilium and both femur shaft. Bond between cartilage, acetabulum and femoral head, sacrum and ilium were assumed to be rigidly connected. The inhomogeneous material properties of the bone are determined from the Hounsfield unit of the CT image using commercial biomedical software. A load case of 60kg body weight was considered and fixed at the distal cut of femoral shaft. For THA lower limbs model, the left femur which suffering for hip OA was cut off and implanted with prosthesis stem. THA implant is designed to be Titanium alloy and Alumina for stem and femoral ball, respectively. Distribution of young modulus of cross-sectional inhomogeneous model is presented in Fig. 2 while model of THA lower limbs also shown in Fig. 2. Higher values of young modulus at the outer part indicate hard or cortical bone. Prediction of bone resorption is discussed with the respect of bone mineral density (BMD). Changes in BMD at initial age to 5 years
The management of the dysplastic hip represents a clinical and a technical challenge to the paediatric orthopaedic surgeon. There is a great deal of variation in the degree and direction of acetabular dysplasia. Preoperative planning in the dysplastic hip is still largely based on plain radiographs. However, these plain films are a 2D
In order to achieve a true AP and lateral radiograph of the wrist, there must be no movement at the radio-ulnar joint. Projections taken with only pronation and supination at the wrist provide two views of the radius but a single view of the ulna. True radiographs are achieved by rotating the humerus through 90 degrees and extending at the elbow between the two views. Our aim was to look at whether true lateral and AP radiographs are taken by our radiology department. Between April 2009 to November 2010, we identified all patients with ulna shortening osteotomies. This was because the plate and screws placed only in ulna making it easy to identify if two
Accurate reconstruction of the knee pose from two X-Ray images will allow the study pre-operative kinematics (for custom prosthesis design) and the post-operative evaluation of the intervention. We used a SSM of the distal femur, based on 24 MRI datasets, from which the mean model and its modes of variation were defined. On the SSM, N landmarks in predefined positions were defined. The user identifies the same landmarks on two X-ray
This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.Aims
Methods
Background. Under- or oversizing of either component of a total knee implant can lead to early component loosening, instability, soft tissue irritation or overstuffing of joint gaps. All of these complications may cause postoperative persistent pain or stiffness. While survival of primary TKA's is excellent, recent studies show that patient satisfaction is worse. Up to 20% of the patients are not satisfied with the outcome as and residual pain is still a frequent occurrence. The goal of this study was therefore to evaluate if the sizing of the femoral component, as measured on a 3D-reconstructed