Please check your email for the verification action. You may continue to use the site and you are now logged in, but you will not be able to return to the site in future until you confirm your email address.
Aim. In severe cases of postoperativespinalimplantinfections (PSII) multiple revision surgeries may be needed. Little is known if changes of the microbiological spectrum and antibiotic resistance pattern occur between revision surgeries. Therefore, the aim of this study was to analyze the microbiological spectrum and antibiotic resistance pattern in patients with multiple revision surgeries for the treatment of PSII. Furthermore, changes of the microbiological spectrum, distribution of mono vs. polymicrobial infections, and changes of the antimicrobial resistance profile in persistent microorganisms were evaluated. Method. A retrospective analysis of a prospectively maintained single center spine infection database was performed with a minimum follow-up of 3 years. Between 01/2011 and 12/2018, 103 patients underwent 248 revision surgeries for the treatment of PSII. Overall, 20 patients (6 male/14 female) underwent 82 revisions for PSII (median 3; range 2–12). There were 55/82 (67.1%) procedures with a positive microbiological result. Microbiological analysis was performed on tissue and implant sonication fluid. Changes in microbial spectrum and antibiotic resistance pattern between surgeries were evaluated using Chi-Square and Fisher's exact test. Results. In total, 74 microorganisms (83.3% gram-positive; 10.8% gram-negative) were identified. The most common microorganisms were Staphylococcus epidermidis (18.9%) and Cutibacterium acnes (18.9%). All S. epidermidis identified were methicillin-resistant (MRSE). Overall, there were 15/55 (27.3%) polymicrobial infections. The microbiological spectrum changed in 57.1% (20/35) between the revision stages over the entire PSII period. In 42.9% (15/35) the microorganism persisted between the revision surgeries stages. Overall, changes of the antibiotic resistance pattern were seen in 17.4% (8/46) of the detected microorganisms comparing index revision and all subsequent re-revisions. Moreover, higher resistance rates were found for moxifloxacin and for ciprofloxacin at first re-revision surgery compared with index PSII revision. Resistances against vancomycin increased from 4.5% (1/23) at index PSII revision to 7.7% (2/26) at first re-revision surgery. Conclusions. Changes of the microbiological spectrum and the resistance pattern can occur in patients with severe PSII who require multiple revision surgeries. It is important to consider these findings in the antimicrobial treatment of PSII. The microbiological analysis of intraoperative tissue samples should be performed at every revision procedure for PSI