Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 70 - 70
1 Jan 2017
Peters M Brans B Wierts R Jutten L Weijers T Broos W Mottaghy F van Rhijn L Willems P
Full Access

The clinical success of posterior lumbar interbody fusion (PLIF) may be limited by pseudarthrosis, defined as the absence of solid fusion 1 year after surgery. Currently, CT is used to diagnose pseudarthrosis but is not able to be conclusive earlier than 1 year after surgery. No non-invasive technique is available to reliably assess bone graft incorporation in the early phase after PLIF. Positron Emission Tomography (PET) is a nuclear imaging modality that is able to identify changes at the cellular and molecular level in an early stage, well before manifestation of anatomical changes. PET/CT with the bone seeking tracer . 18. F-fluoride allows localization and quantification of bone metabolism. This study investigates whether an . 18. F-fluoride PET/CT scan early after PLIF is able to predict the fusion status at 1 year postoperative on CT. Twenty patients after PLIF were enrolled after written informed consent. At 6 weeks and at 1 year after PLIF, intravenous injection of . 18. F-fluoride was followed by a static scan at 60 minutes (Philips, Gemini TF PET/CT). Processing of images resulted in a bone metabolism parameter i.e. standardized uptake value (SUV). This parameter was determined for 3 regions of interest (ROIs): the intervertebral disc space (IDS) and the upper and lower endplate (UE and LE, respectively) of the operated segment. Interbody fusion was scored on a diagnostic CT scan made 1 year postoperatively and was defined as the amount of complete bony bridges between vertebrae, i.e 0, 1 or 2. Based on these scores, patients were divided in either the pseudarthrosis group (score 0) or the fusion group (scores 1 and 2). Differences between groups were analyzed using the independent samples Mann-Whitney U-test. Ten patients were classified as pseudarthrosis (0 bridges: n=10) and 10 patients as fused (1 bridge: n=5, 2 bridges: n=5). Patients in the pseudarthrosis group showed significantly lower bone metabolism values in the IDS on the 6 weeks PET/CT scan compared to patients in the fusion group (SUV. IDS,6w. 13.3±5.62 for pseudarthrosis and 22.6±6.42 for the fusion group, p=0.003), whereas values at the endplates were similar (SUV. UE,6w. 20.3±5.85 for pseudarthrosis and 21.6±4.24 for the fusion group, p=0.282). Furthermore, only in the pseudarthrosis group, bone metabolism in the IDS was significantly lower than at the endplates (p=0.006). In the fusion group, bone metabolism in the IDS and at the endplates was similar (p=0.470). The PET/CT scan at 1 year postoperative showed that in the pseudarthrosis group, bone metabolism of the IDS remained lower compared to the endplates (SUV. IDS,1y. 13.2±4.37, SUV. UE,1y. 16.4±5.33, p=0.004), while in the fusion group, IDS and endplate bone metabolism was similar (SUV. IDS,1y. 13.6±2.91, SUV. UE,1y. 14.4±3.14, p=0.397). This study shows that low bone metabolism values in the IDS of the operated segment as seen on . 18. F-fluoride PET/CT 6 weeks after PLIF, is related to development of pseudarthrosis 1 year postoperatively. These results suggest that . 18. F-fluoride PET/CT might be an early diagnostic tool to identify patients prone to develop pseudarthrosis after PLIF


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 48 - 48
14 Nov 2024
Vadalà G Papalia GF Russo F Nardi N Ambrosio L Papalia R Denaro V
Full Access

Introduction. Intraoperative navigation systems for lumbar spine surgery allow to perform preoperative planning and visualize the real-time trajectory of pedicle screws. The aim of this study was to evaluate the deviation from preoperative planning and the correlations between screw deviation and accuracy. Method. Patients affected by degenerative spondylolisthesis who underwent posterior lumbar interbody fusion using intraoperative 3D navigation since April 2022 were included. Intraoperative cone-beam computed tomography (CBCT) was performed before screw planning and following implantation. The deviation from planning was calculated as linear, angular, and 3D discrepancies between planned and implanted screws. Accuracy and facet joint violation (FJV) were evaluated using Gertzbein-Robbins system (GRS) and Yson classification, respectively. Statistical analysis was performed using SPSS version28. One-way ANOVA followed by Bonferroni post-hoc tests were performed to evaluate the association between GRS, screw deviation and vertebral level. Statistical significance was set at p<0.05. Result. This study involved 34 patients, for a total of 154 pedicle screws. Mean age was 62.6±8.9 years. The mean two-dimensional screw tip deviation in mediolateral (ML), craniocaudal (CC), and anteroposterior (AP) was 2.6±2.45mm, 1.6±1.7mm, and 3.07±2.9mm, respectively. The mean screw tip 3D deviation was 5±3.3mm. The mean two-dimensional screw head deviation in ML, CC and AP was 1.83±1.8mm, 1.7±1.67mm and 3.6±3.1mm, respectively. The mean screw head 3D deviation was 4.94±3.2mm. 98% of screws were clinically acceptable (grade A+B), and grade 0 for FJV. Significant results were found between GRS and ML (p=0.005), AP (p=0.01) and 3D (p=0.003) tip deviations, and between GRS and AP and 3D head deviations (both p=0). Moreover, a significant correlation was found between GRS and vertebral level (p=0). Conclusion. Our results showed a reasonable rate of discrepancy between planned and positioned screws. However, accuracy was clinically acceptable in almost all cases. Therefore, pedicle screw fixation using intraoperative CBCT, 3D navigation and screw planning is safe and accurate