Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 57 - 57
1 Jan 2017
Harris S Dhaif F Iranpour F Aframian A Cobb J Auvinet E Howell S Rivière C
Full Access

Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction. Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment. The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects. Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments. Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured. In the coronal plane, the implant trochlear groove was oriented a mean of 8.7° more valgus (p<0.001) than the normal trochlea. The lateral facet was understuffed most at the proximal groove between 0–60% by a mean of 5.3 mm (p<0.001). The medial facet was understuffed by a mean of 4.4 mm between 0–60% (p<0.001). Despite attempts to design femoral components with a more anatomical trochlea, there is significant understuffing of the trochlea, which could lead to reduced extensor moment of the quadriceps and contribute to patient dissatisfaction


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_3 | Pages 7 - 7
1 Apr 2015
Bhattacharyya R Ker A Fogg Q Joseph J
Full Access

Background:. The Lateral Intercondylar Ridge (LIR) gained notoriety with arthroscopic trans-tibial Anterior Cruciate Ligament (ACL) reconstruction where it was mistakenly used to position the ‘over the top’ guide resulting in graft malposition. With anatomic ACL reconstruction some surgeons use the same ridge to define the anterior margin of the ACL femoral insertion in order to guide graft placement. However there is debate about whether this ridge is a consistent and reliable anatomical structure. The aim of our study was to identify whether the LIR is a consistent anatomical structure and to define its relationship with the femoral ACL insertion. Methods:. In the first part, we studied 23 dry bone specimens. Using a digital microscribe, we created a 3D model of the medial surface of the lateral femoral condyle to evaluate whether there was an identifiable bony ridge. In the second part, we studied 7 cadaveric specimens with soft tissues intact. The soft tissues were dissected to identify the femoral ACL insertion. A 3D reconstruction of the femoral insertion and the surface allowed us to define the relationship between the LIR and the ACL insertion. Results:. All specimens (23 dry bones; 7 intact soft tissues) had a defined ridge on the medial surface of the lateral femoral condyle. The ridge extends from the apex point of the lateral intercondylar notch, where the posterior condyle meets the femoral shaft, and extends obliquely to the articular margin. The mean distance from the midpoint of the posterior condylar articular margin was 10.1 mm. The ridge was consistently located just anterior to the femoral ACL insertion. Conclusion:. This study shows that the LIR is a consistent anatomical structure that defines the anterior margin of the femoral ACL insertion. This supports its use as a landmark for femoral tunnel placement in ACL reconstruction surgery. Abstract 28


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 147 - 147
1 Jul 2014
Dong N Nevelos J Kreuzer S
Full Access

Summary. From a large 3D Caucasian bone data base, female population had significantly larger acetabular anatomical anteversion angle and combined acetabular-femoral anteversion angle than that of male population. There was no significant difference in femoral neck anteversion angles between the groups. Introduction. Combined Anteversion (CA) angle of acetabular component and femoral neck is an important parameter for a successful Total Hip Arthroplasty (THA). The purpose of this study was to electronically measure the version angles of native acetabulum and femur in matured normal Caucasian population from large 3D CT data base. Our question was if there was any significant difference in CA between male and female population. Methods. 221 anonymous (134 males and 87 females) CT paired pelvic and femoral scans from normal Caucasian population with age range of 30–93 years old were analyzed. CT data was converted to virtual bones using custom CT analytical software. 1. (SOMA. TM. V.3.2). Acetabular Anatomical Anteversion (AA) angle as defined by Murray. 2. was selected. The acetabular rim plane was constructed by selecting 3 bony land marks from pubis, ilium and ischium. The AA was measured against pelvic frontal plane. Femoral neck Anteversion (FA) was measured between neck axis plane and the Coronal plane which was defined by posterior condyles. The neck axis plane was defined as being the plane passing through femoral neck axis and being perpendicular to the transverse plane which is defined by distal femoral condyles. The CA angle in standing position was computed as the summation of AA and FNA angles. All the measurements were performed for total, male and female populations. Student's t tests were performed to compare gender difference with an assumed 95% confidence level. The relationship between AA and FA for each gender was studied by the plot of AA and a function of FA. Results. The mean AA angle for total population was 25.8°, SD=6.52°. (male 24.8°, SD=5.91°, female was 27.3°, SD=7.12°. P=0.006). The mean FA angle for total population was 14.3°, SD=7.95°. (male 13.4°, SD=7.99°, female 15.6°, SD=7.76°. P=0.051). The mean CA angle for total population was 40.1°, SD=10.76°. (male 38.2° SD= 10.38 °, female 42.9° SD= 10.79 °. P=.0002). The plot of AA as a function FA is shown. The frequency distribution of CA angle is plotted for males and females. Discussion/Conclusion. The results showed both AA and CA angles were significantly smaller in the male than that in female. However there was no significant difference in FA between male and female. The plot of AA as a function of FA showed no correlation (R. 2. <.09) between the two angles for both male (R. 2. =.0097) and female (R. 2. =.0029). The FA angle of a femoral stem implant in THA may be smaller than that of natural femur, therefore a higher AA or higher posterior build up may be required for the acetabular component to achieve optimal function of a THA. This may be a more significant issue in female population. The limitations of this study was that this population did not have pathological conditions which could lead to THA. However, it should provide reference guidance comparing normal anatomy between male and female


Objectives

Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA.

Methods

We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation.