Advertisement for orthosearch.org.uk
Results 1 - 20 of 50
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 19 - 19
23 Feb 2023
Sandow M Cheng Z
Full Access

This paper presents an ongoing review of the use of a wedge-shaped porous metal augments in the shoulder to address glenoid retroversion as part of anatomical total shoulder arthroplasty (aTSA). Seventy-five shoulders in 66 patients (23 women and 43 men, aged 42 to 85 years) with Walch grade B2 or C glenoids underwent porous metal glenoid augment (PMGA) insertion as part of aTSA. Patients received either a 15º or 30º PMGA wedge (secured by screws to the native glenoid) to correct excessive glenoid retroversion before a standard glenoid component was implanted using bone cement. Neither patient-specific guides nor navigation were used. Patients were prospectively assessed using shoulder functional assessments (Oxford Shoulder Score [OSS], American Shoulder and Elbow Standardized Shoulder Assessment Form [ASES], visual analogue scale [VAS] pain scores and forward elevation [FE]) preoperatively, at three, six, and 12 months, and yearly thereafter, with similar radiological surveillance. Forty-nine consecutive series shoulders had a follow-up of greater than 24 months, with a median follow-up of 48 months (range: 24–87 months). Median outcome scores improved for OSS (21 to 44), ASES (24 to 92), VAS (7 to 0), and FE (90º to 140º). Four patients died, but no others were lost to follow-up. Apart from one infection at 18 months postoperatively and one minor peg perforation, there were no complications, hardware failures, implant displacements, significant lucency or posterior re-subluxations. Radiographs showed good incorporation of the wedge augment with correction of glenoid retroversion from median 22º (13º to 46º) to 4º. All but four glenoids were corrected to within the target range (less than 10º retroversion). The porous metal wedge-shaped augments effectively addressed posterior glenoid deficiency as part of aTSA for rotator cuff intact osteoarthritis, producing satisfactory clinical outcomes with no signs of impending future failure


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 267 - 267
1 Dec 2013
Cohen R
Full Access

Cementless biologic fixation surfaces on total joint replacement devices, such as those used in total hip and knee procedures, have evolved over the decades. Historically, various surfaces to allow bone ingrowth or ongrowth have been applied as a coating to a pre-formed solid metal substrate. As shown in Figure 1, from left to right, representative coating surfaces include sintered beads, diffusion-bonded fiber metal, and plasma sprayed titanium. In certain applications, tantalum porous metal (Fig 1, left) can be used without a solid metal substrate, but its most widespread usage is in a modular acetabular cup design with the porous metal diffusion-bonded to a solid metal substrate similar to other coatings. Each of these examples of biologic fixation surfaces has limitations. With comparatively low porosity, bead, fiber metal and plasma spray coatings are simply a surface enhancement onto a rigid machined, forged or cast metal substrate. Furthermore, the thermal process to apply the coatings can adversely affect the mechanical properties of the metal substrate. Released in the 1990's, tantalum porous metal is considered a ‘highly porous metal’ with twice the porosity of the applied surface coatings. With that greater porosity comes lower strength that requires engineers to make standalone tantalum porous metal shapes more bulky. The chemical deposition process to produce tantalum porous metal shapes has also limitations on geometry possibilities. Where bonding the tantalum porous metal to a solid metal substrate is necessary for adequate strength, that diffusion bonding process pressure can diminish the surface coefficient of friction necessary for initial stability. A new class of manufacturing processing, referred to as ‘additive manufacturing’, allows engineers to create unique porous configurations. These configurations can be fabricated with beneficial properties to a specific implant application. One such enabling additive manufacturing process is called direct metal laser sintering (DMLS). This process utilizes a laser that travels over a fine powder bed. The laser path is determined by a program that mimics a computer model. Where the laser contacts the powder bed, the powder consolidates. Layer by layer, a scaffold porous metal is fabricated. Figure 2 shows a titanium alloy porous metal structure produced by DMLS. This formed biomaterial has 65% porosity, a high coefficient of friction, low stiffness, and strength that is 2 to 3 times that of tantalum porous metal. From a design versatility perspective, with greater strength, relatively thinner and more bone conserving geometries can be developed. When a solid metal surface interface to secure a modular polymer bearing is required, the DMLS process can produce the solid surface and the porous metal at the same time. With no secondary bonding thermal cycle needed, the construct's mechanical integrity is not compromised. Advancing biologic fixation necessitates bone conserving implant designs that have the properties to achieve immediate mechanical stability and longer term bone ingrowth. This novel use of DMLS in this particular porous metal geometry allows engineers to meet those criteria


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 61 - 61
1 May 2014
Berry D
Full Access

Highly porous metal surfaces have transformed acetabular revision surgery by providing (1) enhanced friction which potentially provides greater primary fixation, (2) enhanced bone ingrowth potential, (3) enhanced screw fixation options. These characteristics have led many surgeons to use these devices routinely in acetabular revision and have led to an expansion of the indications for porous uncemented hemispherical cups in acetabular revision. Mid-term results suggest that the historical indications for hemispherical cups in revision surgery can be moderately expanded with some implants with these characteristics. In a recent study of 3448 revision total hip arthroplasties, we found porous tantalum cups had a statistically lower revision rate than other materials/designs. Highly porous metals also have provided the options of metal augments to fill selected bone defects—which can both enhance cup fixation and manage bone loss simultaneously. A number of different highly porous metals are now available, and how each will perform is not yet known


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 19 - 19
1 Apr 2019
Zhou Y Huang Y Tang H Guo S Yang D Zhou B
Full Access

Background. Failed ingrowth and subsequent separation of revision acetabular components from the inferior hemi-pelvis constitutes a primary mode of failure in revision total hip arthroplasty (THA). Few studies have highlighted other techniques than multiple screws and an ischial flange or hook of cages to reinforce the ischiopubic fixation of the acetabular components, nor did any authors report the use of porous metal augments in the ischium and/or pubis to reinforce ischiopubic fixation of the acetabular cup. The aims of this study were to introduce the concept of extended ischiopubic fixation into the ischium and/or pubis during revision total hip arthroplasty [Fig. 2], and to determine the early clinical outcomes and the radiographic outcomes of hips revised with inferior extended fixation. Methods. Patients who underwent revision THA utilizing the surgical technique of extended ischiopubic fixation with porous metal augments secured in the ischium and/or pubis in a single institution from 2014 to 2016 were reviewed. 16 patients were included based on the criteria of minimum 24 months clinical and radiographic follow-up. No patients were lost to follow-up. The median duration of follow-up for the overall population was 37.43 months. The patients' clinical results were assessed using the Harris Hip Score (HHS), Western Ontario and McMaster Universities Osteoarthritis (WOMAC) index and Short form (SF)-12 score and satisfaction level based on a scale with five levels at each office visit. All inpatient and outpatient records were examined for complications, including infection, intraoperative fracture, dislocation, postoperative nerve palsy, hematoma, wound complication and/or any subsequent reoperation(s). The vertical and horizontal distances of the center of rotation to the anatomic femoral head and the inclination and anteversion angle of the cup were measured on the preoperative and postoperative radiographs. All the postoperative plain radiographs were reviewed to assess the stability of the components. Results. At the most recent follow-up, 11 (68.8%) patients rated their satisfaction level as “very satisfied” and 4 (25.0%) were “satisfied.” The median HHS improved significantly and the WOMAC global score decreased significantly at the latest follow-up (? 0.001). No intraoperative or postoperative complications were identified. All constructs were considered to have obtained bone ingrowth fixation. The median vertical distance between the latest postoperative center of rotation to the anatomic center of the femoral head improved from 14.7±10.05 mm preoperatively to 6.77±9.14 mm at final follow-up (p=0.002). The median horizontal distance between the latest postoperative center of rotation to the anatomic center of femoral head improved from 6.3±12.07 mm laterally preoperatively to 2.18±6.98 mm medially at the most recent follow-up (p=0.013) postoperatively. The median acetabular cup abduction angle improved from 55.04°±10.11° preoperatively to 44.43°± 5.73° at the most recent follow-up postoperatively (p=0.001). However, there was no difference in the median cup anteversion angles preoperatively (9.15°±5.36°) to postoperatively (9.66°±3.97°) (P=0.535). Conclusions. Early follow-up of patients reconstructed with the technique of extended ischiopubic fixation with porous metal augments demonstrated satisfactory clinical outcomes, restoration of the center of rotation and adequate biological fixation. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 20 - 20
1 Apr 2019
Tang H Zhou Y Zhou B Huang Y Guo S
Full Access

Aims. Severe, superior acetabular bone defects are one of the most challenging aspects to revision total hip arthroplasty (THA). We propose a new concept of “superior extended fixation” as fixation extending superiorly 2 cm beyond the original acetabulum rim with porous metal augments, which is further classified into intracavitary and extracavitary fixation. We hypothesized that this new concept would improve the radiographic and clinical outcomes in patients with massive superior acetabular bone defects. Patients and Methods. Twenty eight revision THA patients were retrospectively reviewed who underwent reconstruction with the concept of superior extended fixation from 2014 to 2016 in our hospital. Patients were assessed using the Harris Hip Score (HHS) and the Western Ontario and McMaster Universities Osteoarthritis Index score (WOMAC). In addition, radiographs were assessed and patient reported satisfaction was collected. Results. At an average follow-up of 28 months (range 18 – 52 months), the postoperative HHS and WOMAC scores were significantly improved at the last follow-up (p < 0.001). The postoperative horizontal and vertical locations of the COR from the interteardrop line were significantly improved from the preoperative measurements (p < 0.001). One (3.6 %) patient was dissatisfied due to periprosthetic joint infection. Conclusion. Extracavitray and intracavitary superior extended fixation with porous metal augments and cementless cups are effective in reconstructing severe superior acetabular bone defects, with promising short-term clinical and radiographic outcome


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 29 - 29
1 May 2019
Trousdale R
Full Access

Advantages of cones in revision TKA

Reliable, Durable, Easy to do, Solves major problems (bone loss, fixation)

Allograft concerns

Availability, Disease transmission, Preparation difficulties, Long-term fixation/incorporation


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 30 - 30
1 May 2019
Sculco T
Full Access

Bone loss in total knee replacement has different configurations and most condylar and plateau deficits are well managed with prosthetic augmentation. Cones are rarely, if ever, necessary for these deficits and when entire femoral condyles are absent distal segmental replacement has worked well. In the setting of severe intramedullary bone loss on the tibial or femoral side cones may be used to support deficit bone. This is the one indication for the use of cones.

The negative side of cones is that additional bone may be removed to fit a cone adequately. Many of the lesser areas of bone deficiency can be managed by the use of larger diameter stems for fixation. In a paper from Sandford et al. from the Vancouver group allograft results at 5 −10 year follow up had a similar success rate to cones. Rohl in a paper looking at cones and hybrid stems for bone loss in revision TKR found no difference in results at 3.5 years.

Cones cost $4,000–6,000 each and their utilization has been increasing greatly. At Hospital for Special Surgery in 2015 18 cones were used, this has increased to over 150 in 2017 at a cost of $800,000. The overutilization of cones adds considerably to the cost of a revision procedure. Cones have a place in revision TKR for bone loss but it is limited and they should be used in the most extreme cases where bone augmentation is required for structural stability.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 47 - 47
1 Jul 2014
Backstein D
Full Access

Restoration of bone loss is a major challenge of revision TKA surgery. It is critical to achieve of a stable construct to support implants and achieve successful results. Major bone defects of the femoral and/or tibia (AORI type IIB/III) have been reconstructed using impaction grafting, structural allografts or tumor prostheses. The major concerns with structural allograft are graft resorption, mechanical failure, tissue availability, disease transmission, considerable surgical skill required and prolonged operative time. Porous tantalum metaphyseal cones, are becoming the established method of choice to correct large bone defects with several recent studies demonstrating promising results. The high coefficient of friction of these implants provides structural support for femoral and tibial components. The high degree of porosity has excellent potential for bone ingrowth and long-term biologic fixation. Several published series, although with relatively small cohorts of patients, have reported good short-term results with trabecular metal cones for major femoral and tibial bony defects in revision TKA. In a recent study, 16 femoral and 17 tibial cones were reviewed at an average follow up of 33 months (range, 13 to 73 months) the mean Knee Society Score improved from 42 pre-operatively to 83 at last follow up with an improvement of the functional score from an average of 34 to 66 (p<0.0001). Radiological follow up revealed no evidence of loosening or migration of the constructs. No evidence of complications were noted in correlation with the use of trabecular metal cones.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 62 - 62
1 May 2013
Gross A
Full Access

The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone.

Surgical Technique:

The acetabular bed is prepared. If there is less medial bone stock than 2 mm, then morsellised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilisation, then a trabecular metal cup is indicated.

Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more.

The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws.

The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring.

We have used trabecular metal augments in 46 acetabular revisions in conjunction with a TM cup. Thirty-four cases have at least 2 years follow-up with an average of 64.5 months. There has been 4 cup loosenings with 3 re-revisions.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 93 - 93
1 Feb 2017
De Martino I Sculco P Meyers K Nocon A Wright T Sculco T
Full Access

Introduction

Successful cementless acetabular designs require sufficient initial stability between implant and bone (with interfacial motions <150 μm) and close opposition between the porous coating and the reamed bony surface of the acetabulum to obtaining bone ingrowth and secondary stability. While prior generations of cementless components showed good clinical results for long term fixation, modern designs continue to trend toward increased porosity and improved frictional characteristics to further enhance cup stability.

Objectives

We intend to experimentally assess the differences in initial stability between a hemispherical acetabular component with a highly porous trabecular tantalum fixation surface (Continuum® Acetabular System, Zimmer Inc, Warsaw, IN)(Fig 1) and a hemispherical component with the new highly porous Trabecular Titanium® surface (Delta TT, Lima Corporate, Italy)(Fig 2) manufactured by electron beam melting.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 99 - 99
1 Jul 2014
Garbuz D
Full Access

Segmental defects of the acetabulum are often encountered in revision surgery. Many times these can be handled with hemispherical cups. However when larger defects are encountered particularly involving the dome and/or posterior wall structural support for the cup is often needed. In the past structural allograft was used but for the last 12 years at our institution trabecular metal augments have been used in the place of structural allograft in all cases. This talk will focus on technique and mid-term results using augments in association with an uncemented revision shell.

The technique can be broken down into 6 steps outlined below: 1. Exposure, 2. Reaming, 3. Trialing, 4. Augment Inserted, 5. Cup Insertion/Stabilization, 6. Trial Reduction/Liner Cementation

A recent study was undertaken to assess the mid-term results of this technique. We prospectively followed the first 56 patients in whom these augments were utilised in combination with a trabecular metal acetabular component in our unit. Details of this study will be presented.

The median follow up of the surviving patients was 110 months (range 88–128 months). Survivorship of the augments at 10 years was 92.2% (95% CI: 97.0–80.5%). In one case the augment was revised for infection and in 3 for loosening. In 1 of the revised cases there was a pre-operative pelvic discontinuity, the other 2 discontinuities in the series were not revised and remain asymptomatic.

Conclusions

The results of the acetabular trabecular metal augments continue to be encouraging in the medium to long term with low rates of revision or loosening in this complex group of patients.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 63 - 63
1 Feb 2015
Berry D
Full Access

Highly porous metal surfaces have transformed acetabular revision surgery by providing (1) enhanced friction which potentially provides greater primary fixation, (2) enhanced bone ingrowth potential, (3) enhanced screw fixation options. These characteristics have led many surgeons to use these devices routinely in acetabular revision and have led to an expansion of the indications for porous uncemented hemispherical cups in acetabular revision. Mid-term results suggest that the historical indications for hemispherical cups in revision surgery can be moderately expanded with some implants with these characteristics. In a recent study of 3448 revision total hip arthroplasties, we found porous tantalum cups had a statistically lower revision rate than other materials/designs. Highly porous metals also have provided the options of metal augments to fill selected bone defects—which can both enhance cup fixation and manage bone loss simultaneously. A number of different highly porous metals are now available, and how each will perform is not yet known. Highly porous metal shells may be used in combination with highly porous metal augments to make up for segmental bone deficiency. Examples will be shown. Finally, highly porous metal shells may be used as a “cup-cage” combination to provide extra initial cup mechanical stability in extreme cases. Examples will be shown


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 106 - 106
1 Jun 2018
Abdel M
Full Access

Over the past 30 years, cemented, cementless, and hybrid fixation options have been utilised with various total knee arthroplasty (TKA) implant systems. While cemented components are widely used and considered the most reliable method of fixation, historical results may not be applicable to contemporary patients, who are increasingly younger than 65 years of age. Moreover, the literature is not definitive on which method of TKA fixation obtains the best clinical, functional, and radiographic results. A recent Cochrane meta-analysis on roentgen stereophotogrammetric analysis (RSA) included five randomised clinical trials (RCTs) in 297 participants. The authors observed that cemented fixation of tibial components demonstrated smaller displacement in relation to cementless fixation. However, the risk of future aseptic loosening with uncemented fixation was approximately half that of cemented fixation (risk ratio = 0.47, 95% CI 0.24 to 0.92) with a 16% absolute risk difference between groups. Almost all included studies recorded functional measures of Knee Society and Hospital for Special Surgery knee scores, but the authors of each study found no significant difference between the groups. Recently, highly porous metals have become an attractive fixation option in TKA due to their biomechanical properties. In a large RCT of 397 patients, Pulido et al found that uncemented highly porous metal tibias provided comparably durable fixation and reliable pain relief and restoration of function when compared with traditional cemented modular tibias. While longer term studies are needed, cementless TKAs may be a durable and reliable alternative with highly porous metals, particularly in younger patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 58 - 58
1 Apr 2019
Dharia M Armacost J Son Y
Full Access

INTRODUCTION. Porous metal bone fillers are frequently used to manage bony defects encountered in revision total knee arthroplasty (rTKA). Compared to structural graft, porous metal bone fillers have shown significantly lower loosening and failure rates potentially due to osseointegration and increased material strength [1]. The strength of porous metal bone fillers used in lower extremities is frequently assessed using compression/shear/torsion test methods, adapted from spine standards. However, these basic methods may lack clinical relevance, and do not provide any insight on the relationship between patient activity and anticipated prosthesis performance. The goal of this study was to evaluate the response of bone fillers under different activities of daily living, in order to define physiologically relevant worst case biomechanics for component evaluation. METHODS. A bone filler tibial augment is shown in Figure 1. A test construct for tibial augments (half-block each for medial and lateral sides) is shown in Figure 2, along with compatible rTKA components. An additional void in the bone was filled using bone cement. Loading was applied through the tibiofemoral contact patches created on polyethylene tibial insert. Loading was used for two activities of daily living; walking and deep knee bend [2–3]. During walking, the tibiofemoral contact patch on the anterior tibial post gets loaded due to femoral hyperextension with 1.2xbody weight (BW), whereas the medial and lateral condyles get loaded with 3xBW compressive load. For deep knee bend, only the condyles get loaded with 4.34xBW. Compared to walking, 45% higher compressive load magnitude in deep knee bend located further posterior was anticipated to create a larger bending moment and induce higher stress on the half augments. A finite element analysis (FEA) was performed by modeling this test construct with a medium size tibial augment. All components were modeled using linear elastic material properties. All interfaces, including the augment-bone interface (representing full bony ingrowth construct) were modeled using bonded contact. The inferior surface of the bone analogue was constrained. Linear static analyses were performed and peak von mises stress predicted in the tibial augments was compared between activities. RESULTS. Deep knee bend resulted in 31% higher stresses in the tibial augments than for walking. High von mises stresses were mostly predicted at the superior/posterior aspect of the internal side of the augment and in the corners of the cutouts. Figure 3 presents the von mises stresses in the tibial augments for both loading scenarios. DISCUSSION. This study revealed that the 45% increased posterior compressive load associated with deep knee bend is a more significant factor than the moment applied to the post during walking gait for a hyperextended knee, when considering the stress in bone filler augments in revision TKA. The stress in the augments can depend on multiple factors and the proposed FEA method can be used to compare stresses in different porous material bone fillers to determine worst case for assessing its strength


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 67 - 67
1 May 2019
Lewallen D
Full Access

The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5) Impaction grafting; 6) Porous metal cones or sleeves 7) Massive structural allograft-prosthetic composites; 8) Custom implants. Of these, use of uncemented highly porous metal metaphyseal cones in combination with an initial cemented or partially cemented implant has been shown to provide versatile and highly durable results for a range of bone defects including those previously requiring structural bone graft. The hybrid fixation combination of both cement and cementless fixation of an individual tibial or femoral component has emerged as a frequent and often preferred technique. Initial secure and motionless interfaces are provided by the cemented portions of the construct, while subsequent bone ingrowth to the cementless porous metal portions is the key to long term stable fixation. As bone grows into the porous portions there is off loading and protection of the cemented interfaces from mechanical stresses. While maximizing support on intact host bone has been a longstanding fundamental principle of revision arthroplasty, this is facilitated by the use of metaphyseal cones or sleeves in combination with initial fixation into the adjacent diaphysis. Preoperative planning is facilitated by good quality radiographs, supplemented on occasion by additional imaging such as CT. Fluoroscopically controlled x-ray views may assist in diagnosing the loose implant by better revealing the interface between the implant and bone and can facilitate accurate delineation of the extent of bone deficiency present. Part of the preoperative plan is to ensure adequate range and variety of implant choices and bone graft resources for the planned reconstruction allowing for the potential for unexpected intraoperative findings such as occult fracture through deficient periprosthetic bone. While massive bone loss may compromise ligamentous attachment to bone, in the majority of reconstructions, the degree of revision implant constraint needed for proper balancing and restoration of stability is independent of the bone defect. Thus, some knees with minimal bone deficiency may require increased constraint due to the status of the soft tissues while others involving very large bone defects, especially of the cavitary sort, may be well managed with minimal constraint


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 40 - 40
1 Jan 2016
Beckmann N Bitsch R Seeger J Klotz M Reiner T Kretzer JP Jaeger S
Full Access

Introduction. The frequency of revision hip arthroplasty is increasing with the increasing life expectancy and number of individuals treated with joint replacement. Newer porous implants have been introduced which may provide better treatment options for revision arthroplasty. These may require cementation to other prosthesis components and occasionally to bone, however, there is currently no information on how these porous implants interface with cement. Materials and Methods. Cylindrical bone (control group) and porous metal probes with a diameter and height of 10mm were created and subsequently cemented in a standardized setting. These were placed under tensile and torsional loading scenarios. In this experimental study, 10 human femoral heads were used to create 20 cylindrical probes with a diameter and height of 10mm. One side was tapered to 6mm for cementation and interface evaluation. A further set of 20 probes of a porous metal implant (Trabecular Metal®) was created with the same geometry. After the probes were created and lavaged, they were cemented at the tapered surface using a medium viscosity cement at a constant cementation pressure (1.2N/mm2). The setup allowed for comparison of the porous metal/cement interface (group A) with the well-studied control group interface bone/cement (group B). The maximal interface stability of groups A and B were evaluated under tensile and rotational loading scenarios and the cement penetration was measured. Results. Group A showed a significantly decreased cement penetration under the same cementation pressure than group B, yet the interface showed a significantly more stable interface in the measured tests: larger maximum tensile force (effect size 2.7), superior maximum tensile strength (effect size 2.6), greater maximum torsional force (effect size 2.2), and higher rotational stiffness (effect size 1.5). Discussion and Conclusion. The porous metal/cement interface displays substantially more stability than does the bone/cement interface. Although these tests evaluate initial stability in an in-vitro setting, they appear promising with regard to their cemented stability. As a result, a multicomponent porous metal construct with cement interdigitation should not compromise the overall implant primary stability


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 27 - 27
1 Aug 2017
Abdel M
Full Access

Over the past 30 years, cemented, cementless, and hybrid fixation options have been utilised with various total knee arthroplasty (TKA) implant systems. While cemented components are widely used and considered the most reliable method of fixation, historical results may not be applicable to contemporary patients, who are increasingly younger than 65 years of age. Moreover, the literature is not definitive on which method of TKA fixation obtains the best clinical, functional, and radiographic results. A recent Cochrane meta-analysis on roentgen stereophotogrammetric analysis (RSA) included five randomised clinical trials (RCTs) in 297 participants. The authors observed that cemented fixation of tibial components demonstrated smaller displacement in relation to cementless fixation. However, the risk of future aseptic loosening with uncemented fixation was approximately half that of cemented fixation (risk ratio = 0.47, 95% CI 0.24 to 0.92) with a 16% absolute risk difference between groups. Almost all included studies recorded functional measures of Knee Society and Hospital for Special Surgery knee scores, but the authors of each study found no significant difference between the groups. Recently, highly porous metals have become an attractive fixation option in TKA due to their biomechanical properties. In a large RCT of 397 patients, Pulido et al found that uncemented highly porous metal tibias provided comparably durable fixation and reliable pain relief and restoration of function when compared with traditional cemented modular tibias. While longer-term studies are needed, cementless TKAs may be a durable and reliable alternative with highly porous metals, particularly in younger patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 110 - 110
1 May 2019
Abdel M
Full Access

Pelvic discontinuity is defined as a separation of the ilium superiorly from the ischiopubic segment inferiorly. In 2018, the main management options include the following: 1) hemispheric acetabular component with posterior column plating, 2) cup-cage construct, 3) pelvic distraction, and 4) custom triflange construct. A hemispheric acetabular component with posterior column plating is a good option for acute pelvic discontinuities. However, healing potential is dependent on host's biology and characteristic of the discontinuity. The plate should include 3 screws above and 3 screws below the discontinuity with compression in between. In addition, the hemispherical acetabular component should have at least 50% host bone contact with 3–4 screws superior and 2–3 screws inferior to the discontinuity. On the other hand, a cup-cage construct can be used in any pelvic discontinuity. This includes a highly porous acetabular component placed on remaining host bone. Occasionally, highly porous metal augments are used to fill the remaining bone defects. A supplemental cage is placed over the acetabular component, spanning the discontinuity from the ilium to the ischium. A polyethylene liner is then cemented into place with antibiotic-loaded bone cement. Rarely, pelvic distraction may be needed. With this technique, pelvic stability is obtained via distraction of the discontinuity by elastic recoil of the pelvis and by fixing the superior hemipelvis and inferior hemipelvis to a highly porous metal cup or augment with screws, thereby unitizing the superior and inferior aspects of the pelvis. In essence, the cup acts as a segmental replacement of the acetabulum, with healing occurring to the cup or augment, resulting in a unitised hemipelvis. Frequently, the discontinuity itself does not achieve bony healing. Finally, custom triflange constructs are being utilised with increasing frequency. Triflange cups are custom-designed, porous and/or hydroxyapatite coated, titanium acetabular components with iliac, ischial, and pubic flanges. Rigid fixation promotes healing of the discontinuity and biologic fixation of the implant. It requires a CT scan, dedicated preoperative design, and fabrication costs


Introduction. The ability to manufacture implants at the point-of-care has become a desire for clinicians wanting to provide efficient patient-specific treatment. While some hospitals have adopted extrusion-based 3D printing (fused filament fabrication; FFF) for creating non-implantable instruments with low-temperature plastics, recent innovations have allowed for the printing of high-temperature polymers such as polyetheretherketone (PEEK). Due to its low modulus of elasticity, high yield strength, and radiolucency, PEEK is an attractive biomaterial for implantable devices. Though concerns exist regarding PEEK for orthopaedic implants due to its bioinertness, the creation of porous networks has shown promising results for bone ingrowth. In this study, we endeavor to manufacture porous PEEK constructs via clinically-used FFF. We assess the effect of porous geometry on cell response and hypothesize that porous PEEK will exhibit greater preosteoblast viability and activity compared to solid PEEK. The work represents an innovative approach to advancing point-of-care 3D printing, cementless fixation for total joint arthroplasty, and additional applications typically reserved for porous metal. Methods. Three porous constructs – a rectilinear pattern and two triply period minimal surface (TPMSs) - were designed to mimic the morphology of trabecular bone. The structures, along with solid PEEK samples for use as a control, were manufactured via FFF using PEEK. The samples were mCT scanned to determine the resulting pore size and porosity. The PEEK constructs were then seeded with pre-osteoblast cells for 7 and 14 days. Cell proliferation and alkaline phosphatase activity (ALP) were evaluated at each time point, and the samples were imaged via SEM. Results. mCT imaging showed the pores in the PEEK constructs to be open and interconnected. The average pore size was 535 ± 92 µm for the rectilinear, 484 ± 237 µm for the diamond, and 669 ± 216 µm for the gyroid. Porosity was 71% for the rectilinear, 76% for the diamond, and 68% for the gyroid. The average error between the theoretical and actual values was −37.3 µm for pore size and −2.3 % for porosity. Normalized ALP activity of the three porous PEEK samples at 7 days were found to be significantly greater than the solid sample (p < 0.05 rectilinear, p < 0.005 gyroid, p < 0.001 diamond). At 14 days, the same relationships were observed (p < 0.001 for all three designs). No difference between the three geometries was found. SEM imaging revealed cells with flat, elongated morphology attached to the surface of the PEEK. The 14-day samples appeared to have proliferated well and spread along the PEEK pores. Extensions of filopodia and lamellipodia were observed along with large blankets of cells covering the PEEK surface. Discussion. We demonstrated the ability of FFF printed porous PEEK surfaces to promote cellular processes necessary for bone-implant fixation. While all porous structures showed promising results, more investigation into their material characteristics and osteogenic potential are necessary to determine which geometry may be suitable for orthopaedic use. Our work offers an innovative approach to advancing point-of-care 3D printing, cementless implant fixation, and additional applications typically reserved for porous metal


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 29 - 29
1 Jul 2014
Abdel M
Full Access

Over the past 30 years, cemented, cementless, and hybrid fixation options have been utilised with various total knee arthroplasty (TKA) implant systems. While cemented components are widely used and considered the most reliable method of fixation, historical results may not be applicable to contemporary patients, who are increasingly younger than 65 years of age. Moreover, the literature is not definitive on which method of TKA fixation obtains the best clinical, functional, and radiographic results. A recent Cochrane meta-analysis on roentgen stereophotogrammetric analysis (RSA) included five randomised clinical trials (RCTs) in 297 participants. The authors observed that cemented fixation of tibial components demonstrated smaller displacement in relation to cementless fixation. However, the risk of future aseptic loosening with uncemented fixation was approximately half that of cemented fixation (risk ratio = 0.47, 95% CI 0.24 to 0.92) with a 16% absolute risk difference between groups. Almost all included studies recorded functional measures of Knee Society and Hospital for Special Surgery knee scores, but the authors of each study found no significant difference between the groups. Recently, highly porous metals have become an attractive fixation option in TKA due to their biomechanical properties. In a large RCT of 397 patients, Pulido et al. found that uncemented highly porous metal tibias provided comparably durable fixation and reliable pain relief and restoration of function when compared with traditional cemented modular tibias. While longer-term studies are needed, cementless TKAs may be a durable and reliable alternative with highly porous metals, particularly in younger patients