Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:

Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 36 - 36
1 Oct 2019
Partridge S Maitre C Sammon C
Full Access

Introduction. Musculoskeletal diseases are the biggest cause of morbidity worldwide, with low back pain (LBP) being the leading cause. Forty percent of LBP cases are caused by disease of shock absorbers in the spine known as intervertebral discs (IVDs). The IVDs enable the spine to twist and bend, whilst absorbing load during normal daily activities. The durability of this tissue is sustained by the cells of the spine and so during disease or mechanical damage these cells can behave abnormally further damaging the disc and stimulating local nerves causing extreme pain. Degradation of the intervertebral disc (IVD) currently has no preventative treatment; an injectable hydrogel biomaterial could reinforce disc mechanical properties and promote tissue regeneration. Methods and Results. We present an injectable range of hydrogel biomaterials made from water, clay and polymer that set at 37°C. The materials were made at 80°C polymerised in water and stored at 70°C to remain liquid. The physical properties of the materials were assessed using various methods, including mechanical assessment using temperature-controlled rheometry to monitor the liquid-hydrogel transition. Conclusion. Results showed that by changing three factors within the formulation we can produce a range of materials with suitable mechanical and morphological properties for a variety of tissues of the spine. These types of biomaterials have the potential to provide the first efficacious early-mid stage treatment for IVD disease and reduce the cost of LBP on our health services. Conflicts of interest: CS and CLM are named inventors on the patent for NPgel/BGel. Funded by the Medical Research Council and Versus Arthritis UK: SNiPER


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 38 - 38
1 Sep 2019
Sikkens D Broekema A Soer R Reneman M Groen R Kuijlen J
Full Access

Introduction. Degeneration of the cervical spine can lead to neurological symptoms that require surgical intervention. Often, an anterior cervical discectomy (ACD) with fusion is performed with interposition of a cage. However, a cage substantially increases health care costs. The polymer polymethylmethacrylate (PMMA) is an alternative to cages, associated with lower costs. The reported high-occurrence of non-fusion with PMMA is often seen as a drawback, but evidence for a correlation between radiological fusion and clinical outcome is absent. To investigate if the lower rate of fusion with PMMA has negative effects on long-term clinical outcome, we assessed the clinical results of ACD with PMMA as a intervertebral spacer with a 5–10 year follow-up. Methods. A retrospective cohort study among all patients who underwent a mono-level ACD with PMMA for degenerative cervical disease, between 2007–2012, was performed. Patients filled out an online questionnaire, developed to assess clinical long-term outcome, complications and re-operation rates. The primary outcome measure was the Neck Disability Index (NDI), secondary outcome measures were re-operation and complication rates. Results. Of 196 eligible patients, 90 patients were assessed (response rate 53%). The average NDI score at follow-up (mean 7.5 years) was 19.0 points ± 18.0 points. Complications occurred in 10% and re-operation in 8.8%. Conclusion. This study provides evidence of good long-term clinical results of ACD with PMMA, as the results were similar with long-term outcomes of ACD with a cage as spacer. Therefore, the results of this study may suggest that the use of PMMA is an lower-cost alternative. No conflicts of interests. No funding obtained


Bone & Joint Open
Vol. 3, Issue 5 | Pages 348 - 358
1 May 2022
Stokes S Drozda M Lee C

This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1298 - 1304
1 Oct 2012
Hughes SPF Freemont AJ Hukins DWL McGregor AH Roberts S

This article reviews the current knowledge of the intervertebral disc (IVD) and its association with low back pain (LBP). The normal IVD is a largely avascular and aneural structure with a high water content, its nutrients mainly diffusing through the end plates. IVD degeneration occurs when its cells die or become dysfunctional, notably in an acidic environment. In the process of degeneration, the IVD becomes dehydrated and vascularised, and there is an ingrowth of nerves. Although not universally the case, the altered physiology of the IVD is believed to precede or be associated with many clinical symptoms or conditions including low back and/or lower limb pain, paraesthesia, spinal stenosis and disc herniation.

New treatment options have been developed in recent years. These include biological therapies and novel surgical techniques (such as total disc replacement), although many of these are still in their experimental phase. Central to developing further methods of treatment is the need for effective ways in which to assess patients and measure their outcomes. However, significant difficulties remain and it is therefore an appropriate time to be further investigating the scientific basis of and treatment of LBP.