Orthopaedic soft tissues, such as tendons, ligaments, and articular cartilage, rely on their unique collagen fiber architectures for proper functionality. When these structures are disrupted in disease or fail to regenerate in engineered tissues, the tissues transform into dysfunctional fibrous tissues. Unfortunately, collagen synthesis in regenerating tissues is often slow, and in some cases, collagen fibers do not regenerate naturally after injury, limiting repair options. One of the research focuses of my team is to develop functional fiber replacements that can promote in vivo repair of musculoskeletal tissues throughout the body. In this presentation, I will discuss our recent advancements in electrowriting 3D printing of natural
Introduction and Objective. Regeneration of cartilage injuries is greatly limited. Therefore, cartilage injuries are often the starting point for later osteoarthritis. In the past, various bioactive glass (BG) scaffolds have been developed to promote bone healing. Due to the fact that they induce the deposition of hydroxyapatite (HA) -the main component of bone matrix, these BG types are not suitable for chondrogenesis. Hence, a novel BG (Car12N) lacking HA formation, was established. Since BG are generally brittle the combination with
Introduction. The incidences of fragility fractures, often because of osteoporosis, are increasing. Research has moved towards bioresorbable scaffolds that provide temporary mechanical stability and promote osteogenesis. This research aims to fabricate a 3D printed composite Poly (l-lactic-co-glycolic acid)-strontium doped tricalcium phosphate (PLGA-SrTCP) scaffold and evaluate in an in vitro co culture study containing osteoporotic donor cells. Method. PLGA, PLGA TCP, and PLGA SrTCP scaffolds were produced using Fused Filament Fabrication (FFF). A four-group 35-day cell culture study was carried out using human bone marrow derived mesenchymal stem cells (hMSCs) from osteoporotic and control donors (monoculture) and hMSCs & human monocytes (hMCs) (Co culture). Outcome measures were biochemical assays, PCR, and cell imaging. Cells were cultured on scaffolds that had been pre-degraded for six weeks at 47°C prior to drying and gamma sterilisation. Result. 3D printed scaffolds were successfully produced by FFF. All groups in the study supported cell attachment onto the scaffolds, producing extracellular matrices as well as evidence of osteoclast cell structures. Osteoporotic cells increased CTSK activity and CAII activity and decreased ALP activity compared to controls. In control cultures, the addition of bTCP and bTCP/Sr to the PLGA reduced TRAP5b, CAII and ALP activity compared to PLGA alone. The addition of Sr did not show any differences between donors. Conclusion. This study details suitability of 3D printed
We performed a biomechanical study to compare the augmentation of isolated fractured vertebral bodies using two different bone tamps. Compression fractures were created in 21 vertebral bodies harvested from red deer after determining their initial strength and stiffness, which was then assessed after standardised bipedicular vertebral augmentation using a balloon or an expandable
Bone grafting utilises tissue harvesting from second anatomic location of same patient (autograft) or from a human donor (allograft) to treat bone defects. Limited availability of bone grafts, donor site morbidity and risk of disease transmission led to an alternative strategy for bone grafting as synthetic materials that can promote bone regeneration. Engineered bone grafts are biocompatible and possess sufficient mechanical strength to support fractured bone.
Background. Stress shielding and wear induced aseptic loosening cause failure in arthroplasty surgery. To improve survivorship, the use of a low modulus, low wearing biomaterial may be a suitable alternative to hard bearing prostheses, such as cobalt chromium (CoCr). There has been considerable research interest in the use of polyetheretherketone (PEEK) based on observed clinical success especially in spinal surgery. This study investigated the wear performance of PEEK, carbon reinforced PEEK (CFR-PEEK) and acetal as bearing materials in an all
We developed a new porous scaffold made from a synthetic
Impaction bone grafting with milled human allograft is the gold standard for replacing lost bone stock during revision hip surgery. Problems surrounding the use of allograft include cost, availability, disease transmission and stem subsidence (usually due to shear failure of the surrounding allograft). The aim of this study was to investigate various
Polyetheretherketone (PEEK) is a thermoplastic
Long term, secondary implant fixation of Total Disc Replacements (TDR) can be enhanced by hydroxyapatite or similar osseo-conductive coatings. These coatings are routinely applied to metal substrates. The objective of this in vivo study was to investigate the early stability and subsequent bone response adjacent to an all
Introduction. In recent years, there has been a growing interest, in many fields of medicine, in the use of bone adhesives that are biodegraded to non-toxic products and resorbed after fulfilling their function in contact with living tissue. Biomechanical properties of newly developed bone glue, such as adhesion to bone and elastic modulus were tested in our study. Material and methods. Newly developed injectable biodegradable “self-setting” bone adhesive prepared from inorganic tricalcium phosphate powder and aqueous solution of organic thermogelling
There is increasing application of bone morphogenetic proteins
(BMPs) owing to their role in promoting fracture healing and bone
fusion. However, an optimal delivery system has yet to be identified.
The aims of this study were to synthesise bioactive BMP-2, combine
it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide)
(α-TCP/PLGA) nanocomposite and study its release from the composite. BMP-2 was synthesised using an Objectives
Methods
Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the bone mineral density and histological examination. Complete bone union was obtained at six months in both groups. There was no collapse at the osteotomy site, loss of correction or failure of fixation in either group. Staining with haematoxylin and eosin demonstrated that there was infiltration of new bone tissue into the macropores and along the periphery of the implanted scaffold in the scaffold group. The CT scans and measurement of the bone mineral density showed that at six months specimens in the scaffold group had a higher bone mineral density than in the control group, although the implantation of the polycaprolactone-tricalcium phosphate composite scaffold wedge did not enhance healing of the osteotomy.
Sustained release of BMP-2 is reported to be able to reduce the required dose of BMP-2 for bone induction. Nanohydroxyapatite (nHAp) has an osteoinduction capability which is lack in conventional hydroxyapatite. In this study, we combined PLA-PEG with nHAp and investigated the bone regenerative capacity of the newly established composite material of rhBMP-2/PLA-PEG/nHAp in a rat model of spinal fusion. The PLA-PEG was liquidized in acetone and mixed with nHAp and rhBMP-2. The sheet-shaped BMP-2/PLA-PEG (5mg)/nHAp (12.5mg) composites were prepared while evaporating the acetone. The release kinetics of rhBMP-2 from the composite was investigated by ELISA.
Poly-ether-ether-ketone (PEEK) is a biomaterial commonly used for spinal implants and screws. It is often desirable for orthopaedic implants to osseointegrate, but as PEEK is biologically inert this will not occur. The aim of this project was to determine if injection mould nanopatterning can be used to create a make PEEK bioactive and stimulate osteogenesis PEEK substrates were fabricated by injection mould nanopatterning to produce near-square (NSQ) nanopatterned PEEK and planar (FLAT) PEEK samples. Atomic force microscopy (AFM) and scanning electron microscopy were used to characterize the surface topography. Human bone marrow stromal cells (hBMSCs) were isolated from patients undergoing primary hip replacement operations and seeded onto the PEEK substrates. After 6 weeks the cells were stained using alizarin red S (ARS) stain (to detect calcium) and the von Kossa technique (to detect phosphate) and analyzed using CellProfiler image analysis software to determine: surface coverage; cell number; and expression of either calcium (ARS stain) or phosphate (von Kossa technique). ARS stain showed calcium expression (quantified relative to the number of cells) was increased on NSQ PEEK compared to FLAT PEEK (not statistically significant) and the surface coverage was similar. Von Kossa staining revealed more surface coverage on FLAT PEEK (69.1% Although hBMSCs may adhere to NSQ PEEK in smaller numbers, the cells expressed a relatively larger amount of calcium and phosphate. This indicates that the cells adopted a more osteoblastic phenotype and that nanopatterning PEEK induces hBMSC differentiation and stimulates osteogenesis. Injection mould nanopatterning therefore has the potential to improve osseointegration of PEEK implants
We have evaluated The results showed that the degree of bone formation was dependent on the properties of the graft material. The osteoconductive sintered matrix structure showed significant formation of bone at the implant-bone interface. The addition of autogenous marrow increased the penetration of new bone further into the central area of the matrix and also increased the degree of revascularisation. The osteoinductive growth factor BMP-7 induced penetration of new bone throughout the entire structure of the implant. The most effective treatment was with the combination of marrow cells and osteoinductive BMP-7.
Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading, shock absorption, lubrication, and proprioception. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible: only the meniscus tissue which is identified as unrepairable should be excised and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping, or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The features needed for a meniscal scaffold are: promotion of cell migration, it should be biomimetic and biocompatible, it should resist forces applied and transmitted by the knee, it should slowly biodegrade and should be easy to handle and implant. Several materials have been tested, that can be divided into synthetic and biological. The first have the advantage to be manufactured with the desired shapes and sizes and with precise porosity dimension and biomechanical characteristics. To date, the most common
Favoring osseointegration and avoiding bacterial contamination are the key challenges in the design of implantable devices for orthopedic applications. To meet these goals, a promising route is to tune the biointerface of the devices, that can regulate interactions with the host cells and bacteria, by using nanostructured antibacterial and bioactive coatings. Indeed, the selection of adequate metal-based coatings permits to discourage infection while avoiding the development of bacterial resistance and nanostructuring permits to tune the release of the antimicrobial compounds, allowing high efficacy and decreasing possible cytotoxic effects. In addition, metal-doped calcium phosphates-based nanostructured coatings permit to tune both composition and morphology of the biointerfaces, allowing to regulate host cells and bacteria response. To tune the biointerfaces of implantable devices, nanostructured coatings can be used, but their use is challenging when the substrate is heat-sensitive and/or porous. Here, we propose the use of Ionized Jet Deposition (IJD) to deposit metallic and ion-doped calcium phosphates materials onto different
A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable bone substitute contains the proprietary composites of synthetic ceramic bone substitute and absorbable thermoplastic
The implantation of endoprosthesis is a routine procedure in orthopaedics. Endoprosthesis are mainly manufactured from ceramics,