Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 126 - 126
1 Sep 2012
Nich C Nich C Langlois J Marchadier A Vidal C Cohen-Solal M Petite H Hamadouche M
Full Access

Osteoporosis following ovariectomy has been suggested to modulate bone response to polyethylene wear debris. In this work, we evaluate the influence of estrogen deficiency on experimental particle-induced osteolysis. Polyethylene (PE) particles were implanted onto the calvaria of wild-type (WT), sham-ovariectomized (OVX), OVX mice and OVX mice supplemented with estrogen (OVX+E2) (12 mice per group). Sham-implanted mice served as internal controls. After 14 days, seven skulls per group were analyzed with a high-resolution micro-computed tomography (CT) and by histomorphometry, and for tartrate-specific alkaline phosphatase. Five calvariae per group were cultured for the assay of IL-1, IL-6, TNF- and RANKL secretion using quantitative ELISA. The expression of RANKL and OPG mRNA were evaluated using real-time PCR. As assessed by CT and by histomorphometry, PE particles induced an extensive bone resorption and an intense inflammatory reaction in WT, sham-OVX and OVX+E2 mice. In OVX mice group, these features appeared considerably attenuated. In WT, sham-OVX and OVX+E2 mice, PE particles induced an increase in serum IL-6, in TNF-and RANKL local concentrations, and resulted in a two-fold increase in RANKL/OPG mRNA ratio. Conversely, these parameters remained unchanged in OVX mice after PE implantation. The combination of two well-known bone resorptive mechanisms ultimately attenuated osteolytic response, suggesting a protective effect of estrogen deficiency on particle-induced osteolysis. This paradoxical phenomenon was associated with a downregulation of pro-resorptive cytokines. It is hypothesized that excessive inflammatory response was controlled, illustrated by the absence of increase of serum IL-6 in OVX mice after PE implantation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 349 - 349
1 Sep 2012
Heyse T Chen D Kelly N Boettner F Wright T Haas S
Full Access

Introduction. Oxidized zirconium (OxZr) is used as a ceramic surface for femoral components in total knee arthroplasty (TKA). The aim of this study was to investigate its performance by examining retrieved femoral components and their corresponding PE inserts in matched comparison with conventional chrome/cobalt/molybdenum alloy (CrCoMo). Methods. 11 retrieved posterior stabilized (PS) TKA with an OxZr femoral component were included. From a cohort of 56 retrieved TKA with CrCoMo femoral components, pairs were matched according to duration of implantation, patient age, reason for revision, and BMI. The retrieved tibial polyethylene (PE) inserts were analyzed for wear using the Hood classification. Femoral components were optically viewed at 8–32x magnification and screened for scratching, pitting, delamination, and striation. Profilometry was performed to measure surface roughness of the OxZr components using a non-contact white light profiler. Results. The prostheses were in situ for a mean of 18.5±10.6 (OxZr) and 19.5±14.3 (CrCoMo) months (p=0.41). None of these cases were revised for problems directly related to the use of OxZr. There was one reaction to the implant in the CrCoMo group. The average wear of the tibial PE inserts was significantly lower with OxZr components (41.5±16.8 vs. 60.1±22.0, p=0.01). The average wear score in the visual analysis of the femoral components was significantly lower for the OxZr (1.6±1.3 vs. 9.5±0.6, p=0.005). Discussion and Conclusion. Femoral components made of OxZr are less sensitive to in vivo wear damage than those of CrCoMo. PE inlays show significantly less in vivo wear damage in combination with an OxZr femoral component


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 148 - 148
1 Sep 2012
Gottliebsen M Rahbek O Soballe K Stilling M
Full Access

Background. An increasing number of hip prostheses are inserted without bone cement. Experimental research has shown that hydroxyapatite (HA) coated implants are strongly fixated in the bone, which is believed to reduce the likelihood of prosthetic loosening. However, in recent years, there has been much debate about the role of HA particles in third-body polyethylene (PE) wear and formerly we have shown the revision rate to be high among older-design HA coated cups. Purpose. We hypothesized increased PE wear-rate using HA coated acetabular components in comparison with non-HA coated components (control group). Materials and Methods. We performed a retrospective comparative clinical study based on two patient populations identified in the Danish Hip Arthroplasty Registry (October 2006). All patients had primary total hip arthroplasty (THA) between 1997 and 2001 with cementless Mallory-Head acetabular components. One group received HA coated acetabular components (75 patients, 77 hips). The other group received identical components without HA (70 patients, 73 hips). In all cases the liner was similar and 28 mm metal femoral heads were used. All patients were invited for a radiographic follow-up in 2007. The AP radiographs were analysed for two-dimensional (2D) polyethylene wear using the semi-automated PolyWare software. All cases of non-responders, stem revisions, hip dislocations and patients with less than 5 years of follow-up were excluded from the analysis. Findings/Results. The 2D linear PE wear-rate of 0.18 mm/year (SD 0.09) was higher (P<0.001) in the group with HA coated cups (n = 54) compared with 0.12 mm/year (SD 0.07) in the group of non-HA coated cups (n = 35). The Effect size of the difference in linear PE wear-rate, established as Cohen's d, was large (0.9). The time of follow-up was similar (p = 0.11) in the HA group (7.2 years) versus the non-HA group (7.6 years). There was no case-mix concerning distribution of gender and operated side in the groups; however, the mean age was lower (P = 0.001) in the HA group (57 years) compared with the non-HA group (63 years). Conclusions. We found a significantly increased PE wear rate in HA coated acetabular components at midterm follow-up. The patients with HA coated cups were younger on average, and this might partly explain the findings because the activity level expectedly is higher in younger patients. Still an effect size of 0.9 is large and should raise concern and supplement considerations in future clinical decisions on component selection. A randomized (RSA) study on newer type crosslinked polyethylene liners is recommended to bring about more information on the clinical performance and longevity of HA coated acetabular components


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 204 - 204
1 Sep 2012
Zietz C Fritsche A Mittelmeier W Bader R
Full Access

The prevalent cause of implant failure after total joint replacement is aseptic loosening caused by wear debris. Improvement of the wear behaviour of the articulating bearing between the cup and femoral head is essential for increased survival rate of artificial hip joints. Cross-linking of the polyethylene (PE) material is one attempt to reduce wear particle release at the articulating surface. Various cross-linked polyethylenes (X-PE) are used in orthopaedics since several years. In total hip arthroplasty (THA) the use of larger femoral head sizes has specific reasons. Larger heads lead to a decreased risk of total hip dislocation and impingement as well as an improved range of motion in comparison to smaller head sizes like 28mm or less. However, the increasing diameter of femoral head can be associated with lower thickness of the PE liner and increased wear rate. Cross-linking of PE can improve the wear rate of the liner and hence supports the use of larger femoral heads. The aim of this experimental study was to evaluate the wear of standard vs. sequential X-PE (X3-PE) liner in combination with different ceramic femoral head sizes. Wear testing was performed for 5 million load cycles using standard UHMW-PE liners (N2Vac) and X3-PE liners (each Stryker GmbH & Co. KG, Duisburg, Germany) combined with 28mm ceramic ball heads and the Trident PSL acetabular cup (Stryker). Furthermore, X3-PE liners with an internal diameter of 36mm and 44mm and decreased wall thickness (5.9mm and 3.8mm) were combined with corresponding ceramic heads. An eight station hip wear simulator according to ISO 14242 (EndoLab GmbH, Rosenheim, Germany) was used to carry out the standard wear tests. The tests were realised in temperature-controlled chambers at 37°C containing calf serum (protein content 20g/l). The average gravimetrical wear rates of the standard UHMW-PE (N2Vac) liners combined with 28mm ceramic heads amounted to 12.6 ± 0.8mg/million cycles. Wear of X3-PE liners in combination with 28 mm ceramic heads was not detectable. The average gravimetrical wear rates of the X3-PE liners in combination with 36mm and 44mm ceramic heads amounted to 2.0 ± 0.5mg and 3.1 ± 0.3mg/million cycles, respectively. The purpose of this study was to evaluate the effect of femoral head size at THA on standard and sequential X-PE liner. The wear simulator tests showed that the wear rate of PE liners with small heads (28mm) decreased by cross-linking of the PE significantly. The amount of wear at X-PE increased slightly with larger head size (36mm and 44mm). However, by sequential cross-linking, the wear rate using thinner liners and larger femoral heads is reduced to a fractional amount of wear at conventional UHMW-PE. Hence, the above-mentioned advantages of larger femoral head diameters can be realised by improved wear behaviour of sequential X-PE


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 206 - 206
1 Sep 2012
Zietz C Fritsche A Lange R Mittelmeier W Bader R
Full Access

Due to increased life expectancy of human population, the amount of total knee replacements (TKR) is expected to increase. TKR reached a high grade of quality and safety, but most often it fail because of aseptic implant loosening caused by polyethylene (PE) wear debris. Wear is generated at the articulating surfaces, e.g. caused by three body particles, like bone fragments or bone cement particles. The aim of this experimental study was to compare the wear of tibial PE inserts combined with metallic and ceramic femoral components at three body wear situation induced by polymethylmethacrylate (PMMA) and zirconia (ZrO2) particles from the bone cement. Wear testing was performed for 5 Mio load cycles, using tibial standard PE inserts combined with the same CR femoral component, in two different materials, Cobalt Chromium (CoCrMo) and Biolox delta ® ceramic (Multigen Plus Knee System, Lima Corporate, Italy). A knee wear simulator, according to ISO 14243 (EndoLab GmbH, Rosenheim, Germany), was used to carry out the tests. The tests were performed in temperature-controlled test chambers at 37 °C, containing calf serum with a protein content of 30 g/l. Polymethylmethacrylate (PMMA) and zirconia (ZrO2) bone cement particles (Palacos R ®) were manufactured to a size of 30 μm. The three body particles were added at all stations onto the articulating surface of the tibial PE insert (7mg per condyle) at every 500,000 cycles. Wear was determined gravimetrically and the surfaces of tibial inserts were analysed by scanning electron microscope (SEM) after finishing the 5 million cycles. Furthermore, roughness of the PE insert surfaces and the articulating surfaces of the different femoral components were detected and the PE wear particles were analysed by SEM. The average gravimetrical wear rates of the tibial PE inserts in combination with CoCr and Biolox delta ® ceramic femoral components amounted to 6.4 ± 0.9 mg and 2.6 ± 0.4 mg per million cycles, respectively. Beside bone cement particles on the articulating surface of the PE inserts, polished surfaces and scratches were detected by SEM. In comparison to the untreated surfaces of the PE inserts at both material pairings the surface roughness at the articulating areas showed deep scratches and polished regions. Analyses of the metallic femoral components showed scratches at the articulating surfaces, none on ceramics. The present study pointed out the effect of femoral component material in an abrasive three body wear situation on the wear properties of TKR. The wear simulator tests showed that wear of PE inserts under three body wear conditions, in combination with ceramic femoral components, was significantly lower than with metallic femoral components. With regard to anti-allergic properties, ceramic femoral components are promising products for TKR