Degeneration of the cervical spine can lead to neurological symptoms that require surgical intervention. Often, an anterior cervical discectomy (ACD) with fusion is performed with interposition of a cage. However, a cage substantially increases health care costs. The polymer polymethylmethacrylate (PMMA) is an alternative to cages, associated with lower costs. The reported high-occurrence of non-fusion with PMMA is often seen as a drawback, but evidence for a correlation between radiological fusion and clinical outcome is absent. To investigate if the lower rate of fusion with PMMA has negative effects on long-term clinical outcome, we assessed the clinical results of ACD with PMMA as a intervertebral spacer with a 5–10 year follow-up. A retrospective cohort study among all patients who underwent a mono-level ACD with PMMA for degenerative cervical disease, between 2007–2012, was performed. Patients filled out an online questionnaire, developed to assess clinical long-term outcome, complications and re-operation rates. The primary outcome measure was the Neck Disability Index (NDI), secondary outcome measures were re-operation and complication rates.Introduction
Methods
To develop and internally validate a preoperative clinical prediction model for acute adjacent vertebral fracture (AVF) after vertebral augmentation to support preoperative decision-making, named the after vertebral augmentation (AVA) score. In this prognostic study, a multicentre, retrospective single-level vertebral augmentation cohort of 377 patients from six Japanese hospitals was used to derive an AVF prediction model. Backward stepwise selection (p < 0.05) was used to select preoperative clinical and imaging predictors for acute AVF after vertebral augmentation for up to one month, from 14 predictors. We assigned a score to each selected variable based on the regression coefficient and developed the AVA scoring system. We evaluated sensitivity and specificity for each cut-off, area under the curve (AUC), and calibration as diagnostic performance. Internal validation was conducted using bootstrapping to correct the optimism.Aims
Methods
Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S4). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads.Aims
Methods