Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 78 - 78
11 Apr 2023
Vind T Petersen E Lindgren L Sørensen O Stilling M
Full Access

The Pivot-shift test is a clinical test for knee instability for patinets with Anterior cruciate ligament (ACL), however the test has low inter-observer reliability. Dynamic radiostereometry (dRSA) imaging is a highly precise method for objective evaluation of joint kinematics. The purpose of the study was to quantify precise knee kinematics during Pivot-shift test by use of the non-invasive dynamic RSA imaging. Eight human donor legs with hemipelvis were evaluated. Ligament lesion intervention of the ACL was performed during arthroscopy and anterolateral ligament (ALL) section was performed as a capsular incision. Pivot-shift test examination was recorded with dRSA on ligament intact knees, ACL-deficient knees and ACL+ALL-deficient knees. A Pivot-shift pattern was identifyable after ligament lesion as a change in tibial posterior drawer velocity from 7.8 mm/s in ligament intact knees, to 30.4 mm/s after ACL lesion, to 35.1 mm/s after combined ACL-ALL lesion. The anterior-posterior drawer excursion increased from 2.8 mm in ligament intact knees, to 7.2 mm after ACL lesion, to 7.6 mm after combined lesion. Furthermore a change in tibial rotation was found, with increasing external rotation at the end of the pivot-shift motion going from intact to ACL+ALL-deficient knees. This experimental study demonstrates the feasibility of RSA to objectively quantify the kinematic instability patterns of the knee during the Pivot-shift test. The dynamic parameters found through RSA displayed the kinematic changes from ACL to combined ACL-ALL ligament lesion


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 89 - 89
1 Jan 2017
Zaffagnini S Signorelli C Raggi F Grassi A Roberti Di Sarsina T Bonanzinga T Lopomo N Marcacci M
Full Access

The Pivot-shift phenomenon (PS) is known to be one of the essential signs of functional insufficiency of the anterior cruciate ligament (ACL). To evaluate the dynamic knee laxity is very important to accurately diagnose ACL injury, to assess surgical reconstructive techniques, and to evaluate treatment approaches. However, the pivot-shift test remains a subjective clinical examination difficult to quantify. The aim of the present study is to validate the use of an innovative non-invasive device based on the use of an inertial sensor to quantify PS test. The validation was based on comparison with data acquired by a surgical navigation system. The surgeon intraoperatively performed the PS tests on 15 patients just before fixing the graft required for the ACL reconstruction. A single accelerometer and a navigation system simultaneously acquired the joint kinematics. An additional optical tracker set to the accelerometer has allowed to quantify the movement of the sensor. The tibial anteroposterior acceleration obtained with the navigation system was compared with the acceleration acquired by the accelerometer. It is therefore estimated the presence of any artifacts due to the soft tissue as the test-retest repositioning error in the positioning of the sensor. It was also examined, the repeatability of the acceleration parameters necessary for the diagnosis of a possible ACL lesion and the waveform of the output signal obtained during the test. Finally it has been evaluated the correlation between the two acceleration measurements obtained by the two sensors. The RMS (root mean square) of the error of test-retest positioning has reported a good value of 5.5 ± 2.9 mm. While the amounts related to the presence of soft tissue artifacts was equal to 4.9 ± 2.6 mm. It was also given a good intra-tester repeatability (Cronbach's alpha = 0.86). The inter-patient similarity analysis showed a high correlation in the acceleration waveform of 0.88 ± 0.14. Finally the measurements obtained between the two systems showed a good correlation (rs = 0.72, p<0.05). This study showed good reliability of the proposed scheme and a good correlation with the results of the navigation system. The proposed device is therefore to be considered a valid method for evaluating dynamic joint laxity


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1075 - 1081
1 Sep 2002
Bull AMJ Earnshaw PH Smith A Katchburian MV Hassan ANA Amis AA

Our objectives were to establish the envelope of passive movement and to demonstrate the kinematic behaviour of the knee during standard clinical tests before and after reconstruction of the anterior cruciate ligament (ACL). An electromagnetic device was used to measure movement of the joint during surgery. Reconstruction of the ACL significantly reduced the overall envelope of tibial rotation (10° to 90° flexion), moved this envelope into external rotation from 0° to 20° flexion, and reduced the anterior position of the tibial plateau (5° to 30° flexion) (p < 0.05 for all). During the pivot-shift test in early flexion there was progressive anterior tibial subluxation with internal rotation. These subluxations reversed suddenly around a mean position of 36 ± 9° of flexion of the knee and consisted of an external tibial rotation of 13 ± 8° combined with a posterior tibial translation of 12 ± 8 mm. This abnormal movement was abolished after reconstruction of the ACL