Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 72 - 72
1 Jul 2020
Kerslake S Tucker A Heard SM Buchko GM Hiemstra LA Lafave M
Full Access

The primary purpose of this study was to assess whether patients presenting with clinical graft laxity following primary anatomic anterior cruciate ligament (ACL) reconstruction using hamstring autograft reported a significant difference in disease-specific quality-of-life (QOL) as measured by the ACL-QOL questionnaire. Clinical ACL graft laxity was assessed in a cohort of 1134/1436 (79%) of eligible patients using the Lachman and Pivot-shift tests pre-operatively and at 12- and 24-months following ACL reconstruction. Post-operative ACL laxity was assessed by an orthopaedic surgeon and a physical therapist who were blinded to each other's examination. If there was a discrepancy between the clinical examination findings from these two assessors, then a third impartial examiner assessed the patient to ensure a grading consensus was reached. Patients completed the ACL-QOL questionnaire pre-operatively, and 12- and 24-months post-operatively. Descriptive statistics were used to assess patient demographics, rate of post-operative ACL graft laxity, surgical failures, and ACL-QOL scores. A Spearman rho correlation coefficient was utilised to assess the relationships between ACL-QOL scores and the Lachman and Pivot-shift tests at 24-months post-operative. An independent t-test was used to determine if there were differences in the ACL-QOL scores of subjects who sustained a graft failure compared to the intact graft group. ACL-QOL scores and post-operative laxity were assessed using a one-way analysis of variance (ANOVA). There were 70 graft failures (6.17%) in the 1134 patients assessed at 24-months. A total of 226 patients (19.9%) demonstrated 24-months post-operative ACL graft laxity. An isolated positive Lachman test was assessed in 146 patients (12.9%), an isolated positive Pivot-shift test was apparent in 14 patients (1.2%), and combined positive Lachman and Pivot-shift tests were assessed in 66 patients (5.8%) at 24-months post-operative. There was a statistically significant relationship between 24-month post-operative graft laxity and ACL-QOL scores (p < 0.001). Specifically, there was a significant correlation between the ACL-QOL and the Lachman test (rho = −0.20, p < 0.001) as well as the Pivot-shift test (rho = −0.22, p < 0.001). There was no significant difference between the scores collected from the graft failure group prior to failure occurring (mean = 74.38, SD = 18.61), and the intact graft group (mean = 73.97, SD = 21.51). At 24-months post-operative, the one-way ANOVA demonstrated a statistically significant difference between the ACL-QOL scores of the no laxity group (mean = 79.1, SD = 16.9) and the combined positive Lachman and Pivot-shift group (mean = 68.5, SD = 22.9), (p = 0, mean difference = 10.6). Two-years post ACL reconstruction, 19.9% of patients presented with clinical graft laxity. Post-operative graft laxity was significantly correlated with lower ACL-QOL scores. The difference in ACL-QOL scores for patients with an isolated positive Lachman or Pivot-shift test did not meet the threshold of a clinically meaningful difference. Patients with clinical laxity on both the Lachman and Pivot-shift tests demonstrated the lowest patient-reported ACL-QOL scores, and these results exceeded the minimal clinically important difference


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 67 - 67
1 Dec 2016
Schachar R Heard S Hiemstra L Buchko G Lafave M Kerslake S
Full Access

The aim of an anterior cruciate ligament (ACL) reconstruction is to regain functional stability of the knee following ACL injury, ideally allowing patients to return to their pre-injury level of activity. The purpose of this study was to assess clinical, functional and patient-centered outcomes a minimum of 1-year following ACL reconstruction. This study assessed for relationships between post-operative ACL graft laxity, functional testing performance, and scores on the ACL Quality of Life (ACL-QOL) questionnaire. A prospective cohort study design (n = 1938) was used to gather data on clinical laxity, functional performance and quality of life outcomes. Post-operative ACL laxity assessment using the Lachman and Pivot-shift tests was completed independently on each patient by a physiotherapist and an orthopaedic surgeon at a minimum of 12-months post-operatively. A battery of functional tests was performed including single leg balance, single leg landing, 4 single-leg hop tests, and tuck jumps. The hop tests provided a comparative assessment of limb-to-limb function including a single hop for distance, a 6m timed hop, a triple hop for distance, and a triple crossover hop. Patients com¬pleted the ACL-QOL at the 12-month and 24-month post-operative appointments. Descriptive and demographic data were collected for all patients. The degree and frequency of post-operative laxity was calculated. A Pearson r correlation coefficient was employed to determine the relationship between the presence of post-operative laxity and the ACL-QOL scores, between the battery of functional tests and the ACL-QOL scores, as well as between the functional tests and the laxity assessments. Data was gathered for 1512/1938 patients (78%). At clinical assessment a minimum of 1-year post-operatively, 13.2% of patients demonstrated a positive Lachman and/or Pivot-shift test. The mean ACL-QOL score for patients with no ACL laxity was 80.8/100, for patients with a positive Lachman or Pivot-shift test the mean score was 72.3/100, and for patients with both positive Lachman and Pivot-shift tests the score was 66.9/100. Pearson r correlation coefficient demonstrated a significant relationship between the presence of ACL graft laxity and ACL-QOL score (p < 0.05). Statistically significant correlations were evident between all of the operative limb single-leg hop tests and the post-operative ACL-QOL scores (p < 0.05). Statistically significant correlations were evident between the operative limb triple-hop tests and presence of ACL graft laxity (p < 0.05). Patients with clinically measurable ACL graft laxity demonstrate lower ACL-QOL scores as well as lower performance on a battery of functional tests. The disease-specific outcome measure was strongly correlated to the patient's ability to perform single-limb functional tests, indicating that the ACL-QOL score accurately predicted level of function


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 14 - 14
1 Jul 2020
Marquis M Kerslake S Hiemstra LA Heard SM Buchko G
Full Access

The aim of an anterior cruciate ligament (ACL) reconstruction is to regain functional stability of the knee following ACL injury, ideally allowing patients to return to their pre-injury level of activity. The purpose of this study was to assess clinical, functional and patient-reported outcomes following primary ACL reconstruction with hamstring autograft. A prospective case-series design (n=1610) was used to gather data on post-operative ACL graft laxity, functional testing performance and scores on the ACL quality of life (ACL-QOL) questionnaire. Demographic data were collected for all patients. Post-operative ACL laxity assessment using the Lachman and Pivot-shift tests was completed independently on each patient by a physiotherapist and an orthopaedic surgeon at the 6-, 12- and 24-months post-operative appointments. A battery of functional tests was also assessed including single leg Bosu balance, and 4 single-leg hop tests. The hop tests provided a comparative assessment of limb-to-limb function. Patients completed the ACL-QOL at all time points. The degree and frequency of post-operative laxity was calculated. A Spearman's rank correlation matrix was undertaken to assess for relationships between post-operative laxity, functional test performance, and the ACL-QOL scores. A linear regression model was used to assess for relationships between the ACL-QOL scores, as well as the functional testing results, and patient demographic factors. ACLR patients were 55% male, with a mean age of 29.7 years (SD=10.4), mean BMI of 25 (SD=3.9), and mean Beighton score of 3.3 (SD=2.5). At clinical assessment 2-years post-operatively, 20.6% of patients demonstrated a positive Lachman test and 7.7% of patients demonstrated a positive Pivot-shift test. The mean ACL-QOL score was 28.6/100 (SD=13.4) pre-operatively, 58.2/100 (SD=17.6) at 6-months, 71.8/100 (SD=18.1) at 12-months, and 77.4/100 (SD=19.2) at 24-months post-operative. Functional tests assessing operative to non-operative limb performance demonstrated that patients were continuing to improve up to the 24-month mark, with limb symmetry indices ranging from 96.6–103.1 for the single-leg hop tests. Spearman's correlation coefficient demonstrated a significant relationship between the presence of ACL graft laxity and ACL-QOL score at 12- and 24-months post-operative (p < 0 .05). Functional performance on the single leg balance and single-leg hop tests demonstrated significant correlations to the 6-, 12- and 24-month ACL-QOL scores (p < 0 .05). There was no statistically significant correlation between the functional testing results and the presence of ACL graft laxity. This study demonstrated that up to 20.6% of patients had clinically measurable graft laxity 2-years after ACLR. In this cohort, patients with graft laxity demonstrated lower ACL-QOL scores, but did not demonstrate lower functional testing performance. Patient-reported ACL-QOL scores improved significantly at each time point following ACLR, and functional performance continued to improve up to 2-years after surgery. The ACL-QOL score was strongly correlated to the patient's ability to perform single-limb functional tests, indicating that the ACL-QOL score accurately predicted level of function


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 149 - 149
1 Jul 2020
Burkhart T Getgood A Abbott M Dentremont A
Full Access

Previous studies have identified the anterolateral complex (ALC) as having an important role in controlling anterolateral rotatory laxity following anterior cruciate ligament injury and subsequent reconstruction. In particular, injury to the iliotibial band (ITB) and its component deep (dITB) and capsulo-osseous (coITB) layers, have been shown to significantly correlate with different grades of the pivot-shift test in patients with acute ACL injuries. However, the kinematic properties of the capsulo-osseous layer of the ITB, throughout knee range of motion, are not fully understood. The purpose of this study was to quantify the kinematic behaviour of the capsulo-osseous layer of the ITB through various degrees of knee flexion. Ten fresh-frozen cadaveric knee specimens were dissected to expose the capsulo-osseous layer of the iliotibial band. Radiopaque beads were embedded, at standardized increments (12.5%, 25%, 50% and 75% of total length from proximal to distal), into the tissue and fluoroscopic images were taken from 0o to 105o of knee flexion in 15° increments. The positions of the beads were identified in each image and the length, width, and area changes of the capsulo-osseous layer were calculated. Comparisons of the total length of the anterior and posterior borders of the coITB through knee ROM were conducted using a two-way (8 knee angles by 2 borders) repeated measures analysis of variance (rm-ANOVA), whereas the effect of knee angle on isometry and total area changes was assessed using one-way rm-ANOVAs (α=0.05). There was a significant increase in the length of the anterior capsulo-osseous layer at flexion angles greater than 15o and on the posterior border at angles greater than 75 o with changes occurring primarily at 12.5 % of the total length. In addition, at all flexion angles the length changes were significantly larger in the anterior border compared to the posterior border. Meanwhile, non-homogenous decreases in width and area were found with increasing flexion angle. The distance between the capsulo-osseous layer insertion on the distal femur and proximal tibia significantly increased from 60o-105o, maximal changes occurred at 105o (9.64 [4.12] %, p = 0.003). The primary finding of this study was that the coITB behaved in a non-isometric fashion, with significant increases in length occurring at flexion angles greater than 15o. Moreover, these changes in length were non-homogenous across the different regions of the coITB that were investigated, with the greatest changes occurring in the proximal segments (0–25%). The data presented here suggest that coITB in flexion angles from 0o to 105o behaves in a non-isometric fashion, with the majority of its length change occurring in its proximal segment. Further quantification of the pathway that the coITB takes with respect to osseous landmarks may result in improvements in ALC procedures as an augmentation to ACL reconstruction, thereby potentially improving rotational stability and clinical outcomes


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 26 - 26
1 Dec 2017
Pedersen D Vanheule V Wirix-Speetjens R Taylan O Delport HP Scheys L Andersen MS
Full Access

Joint laxity assessments have been a valuable resource in order to understand the biomechanics and pathologies of the knee. Clinical laxity tests like the Lachman test, Pivot-shift test and Drawer test are, however, subjective of nature and will often only provide basic information of the joint. Stress radiography is another option for assessing knee laxity; however, this method is also limited in terms of quantifiability and one-dimensionality. This study proposes a novel non-invasive low-dose radiation method to accurately measure knee joint laxity in 3D. A method that combines a force controlled parallel manipulator device, a medical image and a biplanar x-ray system. As proof-of-concept, a cadaveric knee was CT scanned and subsequently mounted at 30 degrees of flexion in the device and placed inside a biplanar x-ray scanner. Biplanar x-rays were obtained for eleven static load cases. The preliminary results from this study display that the device is capable of measuring primary knee laxity kinematics similar to what have been reported in previous studies. Additionally, the results also display that the method is capable of capturing coupled motions like internal/external rotation when anteroposterior loads are applied. We have displayed that the presented method is capable of obtaining knee joint laxity in 3D. The method is combining concepts from robotic arthrometry and stress radiography into one unified solution that potentially enables unprecedented 3D joint laxity measurements non-invasively. The method potentially eliminates limitations present in previous methods and significantly reduces the radiation exposure of the patient compared to conventional stress radiography