Femoral shaft fractures are routinely treated using antegrade intramedullary nailing under fluoroscopic guidance. Malreduction is common and can be due to multiple factors. Correct entry point identification can help minimize malreduction and the risk of iatrogenic fracture. This study aims to compare landmark identification used to guide nail entry, the piriformis fossa (PF) and the trochanteric tip (T), via computer navigation and conventional fluoroscopy. The location of the PF and T were digitized under direct visualization with a three-dimensional scribe on ten, fresh-frozen cadaveric right femora (two male, eight female) by three fellowship trained orthopaedic surgeons. To estimate inter- and intraobserver reliability of the direct measurements, an intraclass correlation coefficient was calculated with a minimum of two weeks between measurements. Under navigation, each specimen was draped and antero-posterior (AP) and lateral radiographs of the proximal femur were taken with a c-arm and image intensifier. The c-arm was positioned in a neutral position (0 for AP, 90 for lateral) and rotated in 5 increments, yielding a range of acceptable images. Images, in increments of 5, within the AP range (with a neutral lateral) were loaded into a navigation system (Stryker, MI). A single surgeon digitized the T and PF directly based on conventional fluoroscopy, and again directed by navigation, yielding two measurements per entry point per specimen. This was repeated for the lateral range. Hierarchical linear modelling and a Wilcox rank test were used to determine differences in accuracy and precision, respectively, in the identification of PF and T using computer navigation vs. conventional fluoroscopy.Purpose
Method
Introduction. Total hip arthroplasty (THA) is a common operation. Different operative approaches have specific benefits and compromises. Soft tissue injury occurs in total hip arthroplasty. This prospective study objectively measured muscle volume changes after direct anterior and posterior approach surgeries. Methods. Patients undergoing Direct Anterior Approach (DAA) and Posterior Approach (PA) THA were prospectively evaluated. 3 orthopaedic surgeons performed all surgeries. Muscle volumes of all major muscles around the hip were objectively measured using preoperative and 2 different postoperative follow-up MRIs. 2 independent measurers performed all radiographic volume measurements. Repeated-measures ANOVA was used to compare mean muscle volume changes over time. Student's t-test was used to compare muscle volumes between groups at specific time intervals. Results. MRIs for 10 DAA and 9 PA patients were analyzed. No significant differences between groups were found in BMI or Age. Pre-operative muscle volume comparisons showed no significant differences. Average postoperative follow-up times were 9.6 and 24.3 weeks. First follow-up showed significant atrophy for the DAA in Gluteus Medius (−7.3%), Gluteus Minimus (−17.5%), and Obturator Internus (−37.3%) muscles. Final follow-up showed significant recovery in Gluteus Medius (+12%) and Minimus (+11.1%) muscles. In the PA, atrophy was significant at first follow-up for Gluteus Minimus (−11.8%), Obturator Internus (−46.8%) and Externus (−16%),
The Gibson and Moore postero-lateral approach is one of the most often used in hip replacement. The advantage of this approach is an easy execution but it's criticized because of its invasivity to muscle-tendinous tissues especially on extrarotators muscles and because of predisposition to posterior dislocation. Since June 2003 we executed total hip replacements using a modified postero-lateral approach which allows to preserve the piriformis and quadratus femoris muscles and to detach just the conjoint tendon (gemelli and obturator internus). Articular capsule is preserved and it will be anatomically sutured at the end of the procedure as well as the conjoint tendon with two transossesous sutures.