Aim. Staphylococcus aureus is the first causative agent of bone and joints infections (BJI). It causes difficult-to-treat infections because of its ability to form biofilms, and to be internalized and persist inside osteoblastic cells. Recently,
Aim. Bacteriophages, viruses specific of bacteria, are receiving substantial attention as alternative antibacterial agents to treat bacteria frequently multi-resistant to antibiotics and/or able to form biofilms, such as staphylococci. The latter are responsible for very difficult to treat bone and joint infections (BJIs). In this context, our consortium aims to develop a production of therapeutic phages in accordance with the will of ANSM (French National Agency for the Safety of Medicines and Health Products) to encourage the development of a national academic platform for
Many bone and joint infections, in spite of appropriated antibiotics therapy and surgery, lead to a therapeutic dead end. We are then faced with a chronic infection with or without continuous antibiotic treatment, with daily local care, and an exhorbitant economic and social cost. Pami the incriminated factors: the presence of foreign implant material, the poor diffusion of antibiotics at the infectious site, the presence of biofilm. The bacteriophages, biological drug, natural environmental viruses possess the properties to meet these difficulties: well diffusion to the infectious focus with possibilities of local use, destruction of the biofilm allowing a release of the bacteria and a synergistic effect with the antibiotics, antibiofilm effect for the restoration of osteoblastosis. We report a cohort of phage - treated patients with or without antibiotics in bone and joint infections in a therapeutic dead end. Without disponibility of therapeutic phages available in the European Union, commercial cocktails of phages, antistaphylococcal or polyvalent, of Russian* or Georgian** origin were used. Ten patients have benefited since 2008 from phages, alone or in combination with an adapted antibiotic therapy. Patients were 40 to 89 years old and had chronic bone and joint infections except for one case with acute MRSA infection on femoral implant. Bacteria were With a follow-up of up to 9 years for some patients, the initial bacteria were eradicated and in 2 cases replaced by another bacterium (Aim
Method and results
Aim.
Background. Bacteriophages are natural viruses of interest in the field of PJI. A paper previously reported the PhagoDAIR procedure (use of phages during DAIR) in three patients with PJI for whom explantation was not desirable. As the need to isolate the pathogen before surgery to perform phage susceptibility testing is a strong hindrance for the development of this procedure, we developed post-operative phage injections using ultrasound, in patients infected with S. aureus and/or P. aeruginosa who were eligible for the PhagoDAIR procedure, but for whom phages were not available at the time of surgery. Materials/Methods. We performed a single center, exploratory, prospective cohort study including patients with knee PJI who received
The number of arthroplasties being undertaken
is expected to grow year on year, and periprosthetic joint infections will
be an increasing socioeconomic burden. The challenge to prevent
and eradicate these infections has resulted in the emergence of
several new strategies, which are discussed in this review. Cite this article: