Advertisement for orthosearch.org.uk
Results 1 - 20 of 124
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 96 - 96
1 Nov 2021
Facchini A Ghezzi R Troiano E Giacchè T Cacioppo M Mondanelli N Giannotti S
Full Access

Introduction and Objective. Some periprosthetic femoral fractures (PFFs) present history and radiographic aspect consistent with an atypical femoral fracture (AFF), fulfilling the criteria for AFF except that PFFs by themselves are excluded from the diagnosis of AFFs. The aim of this study was to evaluate in a single Institution series of PFFs if any of them could be considered a periprosthetic atypical femoral fracture (PAFF), and their prevalence. Materials and Methods. Surgical records were searched for PFFs around a primary hip stem from January 2013 to December 2019. Cases were classified according to Vancouver classification. Demographic and medical history were extracted. Fisher's exact test was used for statistical analysis. Results. One-hundred-fifteen PFFs were identified, 59 of them were type B1 and 16 were type C. Radiographs and medical records were available for all patients. Twenty-four patients (32%) have been treated with bisphosphonates (BPs) for longer than 4 years. Four patients presented a fracture with characteristics of PAFF. When enlarged to all PFFs of the series, no other PAFF was found: prevalence of PAFFs was 5.3% for type B1 and C cases and 3.5% for all surgically treated PFFs. Statistical significative difference between PAFFs and PFFs was found for prolonged BPs assumption and for the level of fracture clear of the stem. Conclusions. Fracture with characteristics of AFFs can also happen over a prosthetic stem, configuring themselves as PAFFs, and they are related to prolonged BPs use. As a correct diagnosis is mandatory for proper treatment, a revision of criteria for AFFs should be considered, accepting that PAFFs exist


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 5 - 5
17 Nov 2023
Mahajan U Mehta S Kotecha A
Full Access

Abstract. Introduction. In general the life expectancy of population is improving. This is causing to increase case load of peri-prosthesis fractures after joint replacements. We present our results of peri-prosthesis fracture around hip managed by revision arthroplasty. Methods. A retrospective analysis of 24 consecutive patients of periprosthetic hip fracture treated with a revision arthroplasty at Major Trauma Centre between February 2021 and January 2022. Results. 12 male and 12 female patients, average age 78 years. 3 fractures around BHR prosthesis, 2 type A, 15 type B and 3 of type C (Vancouver). The surgery was done in an average 6 days after injury (range 1–14). 6 patients died in follow up, 1 patient contracted infection, 2 developed LLD and 1 patient had multiple dislocations. 6 patients had revision using endo-prosthesis. Advanced age with peri-prosthesis fracture has increased risk of mortality (average age 84.5 years). Conclusion. Endo-prosthesis replacement had higher risk of dislocation, infection and mortality. Overall patients do well after a revision arthroplasty for periprosthetic hip fracture. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Abstract. Objective. To compare the periprosthetic fracture mechanics between a collared and collarless fully coated cementless femoral stem in a composite femur. Methods. Two groups of six composite femurs (‘Osteoporotic femur’, SawBones, WA USA) were implanted with either a collared (collared group) or collarless (collarless group) cementless femoral stem which was otherwise identical by a single experienced surgeon. Periprosthetic fractures of the femur were simulated using a previously published technique. High speed video recording was used to identify fracture mechanism. Fracture torque and angular displacement were measured and rotational work and system stiffness were estimated for each trial. Results were compared between collared and collarless group and the comparison was evaluated against previously published work using fresh frozen femurs and the same protocol. Results. In composite femur testing median fracture torque (IQR) was greater with a collared versus collarless implant (48.41 [42.60 to 50.27] Nm versus 45.12 [39.13 to 48.09] Nm, p= 0.4). Median rotational displacement (IQR) was less with a collared versus collarless implant (0.29 [0.27 to 0.31] radians versus 0.33 [0.32 to 0.34] radians, p= 0.07). Estimated rotary work was similar between groups (5.76 [4.92 to 6.64] J versus 5.21 [4.25 to 6.04] J, p= 0.4). Torsional stiffness was greater with a collared versus collarless implant (158.36 [152.61, 163.54] Nm per radian versus 138.79 [122.53, 140.59] Nm per radian, p= 0.5). Collarless stems were seen to move independently of the femur and fracture patterns originated at the calcar. Conclusions. Testing with composite femurs using an established protocol produced similar results to previously published studies using human femurs, but the difference between collared and collarless stems was smaller. The internal homogenous foam material in composite femurs does not accurately represent the heterogeneous cancellous bone which supports a femoral stem in vivo and may lead to overestimation of implant stability. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 27 - 27
14 Nov 2024
Bulut H Giray Batibay S Kanay E Özkan K
Full Access

Introduction. Despite the implementation of numerous preventive measures in recent years, the persistent challenge of periprosthetic infections remains. Among the various strategies, metallic modification of implants, particularly with silver, has emerged as a promising avenue. Silver's antimicrobial properties, coupled with its low human toxicity, render it an appealing option. However, ongoing debate surrounds its comparative efficacy in infection prevention when contrasted with titanium-coated prostheses. Methods. The PubMed database was systematically searched up to March 2024. Studies in English that met predetermined inclusion/exclusion criteria and utilized “Megaprosthesis AND infection” and “ silver-coated AND infection “ as key terms were included. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) statement guided the article selection process. Results. From a pool of 1892 potential papers after literature screening, 11 studies with a total of 1419 patients were meticulously selected for analysis. Among these patients, 638 were treated with silver-coated implants, while 781 received titanium-coated implants, resulting in 166 recorded cases of infection. Remarkably, the infection rate stood at 9.2% for the silver-coated group, contrasting with 13.4% for the titanium-coated group. The subsequent analysis unveiled a notable discrepancy in proportions (P difference = -0.0473, 95%CI: -0.088 to -0.006), signaling a statistically significant decrease in infections within the silver-coated cohort. Furthermore, the I2 statistic, denoting heterogeneity in effect sizes, stood at 21.8% (95%CI: 0.0-66.9), indicating a modest degree of variability among the studies. Conclusion. In conclusion, our systematic review and meta-analysis shed light on the potential of silver-coated implants in mitigating periprosthetic infections. Despite the persistent challenge posed by such infections, our findings suggest a statistically significant decrease in infection rates among patients treated with silver-coated implants compared to those with titanium-coated ones


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 40 - 40
17 Apr 2023
Saiz A Kong S Bautista B Kelley J Haffner M Lee M
Full Access

With an aging population and increase in total knee arthroplasty, periprosthetic distal femur fractures (PDFFs) have increased. The differences between these fractures and native distal femur fractures (NDFF) have not been comprehensively investigated. The purpose of this study was to compare the demographic, fracture, and treatment details of PDFFs compared to NDFFs. A retrospective study of patients ≥ 18 years old who underwent surgical treatment for either a NDFF or a PDFF from 2010 to 2020 at a level 1 trauma center was performed. Demographics, AO/OTA fracture classification, quality of reduction, fixation constructs, and unplanned revision reoperation were compared between PDFF patients and NDFF patients using t-test and Fisher's exact test. 209 patients were identified with 70 patients having a PDFF and 139 patients having a NDFF. Of note, 48% of NDFF had a concomitant fracture of the ipsilateral knee (14%) or tibial plateau (15%). The most common AO/OTA classification for PDFFs was 33A3.3 (71%). NDFFs had two main AO/OTA classifications of 33C2.2 (28%) or 33A3.2. (25%). When controlling for patient age, bone quality, fracture classification, and fixation, the PDFF group had increased revision reoperation rate compared to NDFF (P < 0.05). PDFFs tend to occur in elderly patients with low bone quality, have complete metaphyseal comminution, and be isolated; whereas, NDFF tend to occur in younger patients, have less metaphyseal comminution, and be associated with other fractures. When controlling for variables, PDFF are at increased risk of unplanned revision reoperation. Surgeons should be aware of these increased risks in PDFFs and future research should focus on these unique fracture characteristics to improve outcomes


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 118 - 118
14 Nov 2024
Schlauch A Shah I Crawford B Martin A Denisov A Tamer P Farrell B
Full Access

Introduction. Distal femur fractures around a total knee arthroplasty (TKA) are a growing problem for orthopaedic surgeons. The purpose of this study was to identify risks of reoperation for nonunion following open reduction and internal fixation of TKA periprosthetic distal femur fractures (PDFF). Method. Patients with PDFF (AO 33A-C[VB1, C1, D1], Su types 1-3) managed operatively with open reduction and internal fixation (ORIF) were retrospectively reviewed. Exclusion criteria were acute management with a distal femur replacement, less than 6 months of follow-up, and lack of injury or follow-up radiographs. The primary outcome measure was reoperation to achieve bony union. Comparisons were made between cases that did and did not require a reoperation to achieve union. Univariate analysis was used to identify factors to be analyzed in multivariate analysis to determine independent risk factors for the primary outcome. Result. A total of 77 patients met inclusion criteria. Union rate was 69/77 (89.6%). There were no differences between the groups for age, sex, BMI, comorbidities, Su classification, open injury, or mechanism of injury. Multivariate analysis identified risks for nonunion including post-operative malalignment (OR 1.41; CI 1.20-1.64; p<0.001), notching pre-operatively (OR 1.22; CI 1.04-1.42; p=0.012), presence of screws through fracture line (OR 1.28; CI 1.17-1.39; p<0.001), plate length <12 holes (OR 1.16; CI 1.02-1.33; p=0.024) and screw density greater than 0.4 (OR 2.18; CI 1.25-3.78; p=0.006). Conclusion. The reoperation rate to promote union was 10.4%. The study identified post-operative malalignment, notching pre-operatively, presence of screws through fracture line, plate length <12 holes, and proximal screw density greater than 40% as independent risk factors for nonunion


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 120 - 120
1 Nov 2021
Gregori P Singh A Harper T Franceschi F Blaber O Horneff JG
Full Access

Introduction and Objective. Total shoulder replacement is a common elective procedure offered to patients with end stage arthritis. While most patients experience significant pain relief and improved function within months of surgery, some remain unsatisfied because of residual pain or dissatisfaction with their functional status. Among these patients, when laboratory workup eliminates infection as a possibility, corticosteroid injection (CSI) into the joint space, or on the periprosthetic anatomic structures, is a common procedure used for symptom management. However, the efficacy and safety of this procedure has not been previously reported in shoulder literature. Materials and Methods. A retrospective chart review identified primary TSA patients who subsequently received a CSI into a replaced shoulder from 2011 – 2018 by multiple surgeons. Patients receiving an injection underwent clinical exam, laboratory analysis to rule out infection, and radiographic evaluation prior to CSI. Demographic variables were recorded, and a patient satisfaction survey assessed the efficacy of the injection. Results. Of the 43 responders, 48.8% remembered the injection. The average time from index arthroplasty to injection was median 16.8 months. Overall, 61.9% reported decreased pain, 28.6% reported increased motion, and 28.6% reported long term decreased swelling. Improvement lasted greater than one month for 42.9% of patients, and overall 52.4% reported improvement (slight to great) in the shoulder following CSI. No patient developed a periprosthetic joint infection (PJI) within 2 years of injection. Conclusions. This study suggests that certain patients following TSA may benefit from a CSI. However, this should only be performed once clinical, radiographic, and laboratory examination has ruled out conditions unlikely to improve long term from a CSI. Given these findings, further study in a large, prospective trial is warranted to fully evaluate the benefits of CSI following TSA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 36 - 36
11 Apr 2023
Boyce S Le Maitre C Smith T Nichol T
Full Access

An increasing elderly population means joint replacement surgery numbers are projected to increase, with associated complications such as periprosthetic joint infections (PJI) also rising. PJI are particularly challenging due to antimicrobial resistant biofilm development on implant surfaces and surrounding tissues, with treatment typically involving invasive surgeries and systemic antibiotic delivery. Consequently, functionalisation of implant surfaces to prevent biofilm formation is a major research focus. This study characterises clinically relevant antimicrobials including gentamicin, clindamycin, daptomycin, vancomycin and caspofungin within a silica-based, biodegradable sol-gel coating for prosthetic devices. Antimicrobial activity of the coatings against clinically relevant microorganisms was assessed via disc diffusion assays, broth microdilution culture methods and the MBEC assay used to determine anti-biofilm activity. Human and bovine cells were cultured in presence of antimicrobial sol-gel to determine cytotoxicity using Alamar blue and antibiotic release was measured by LC-MS. Biodegradability in physiological conditions was assayed by FT-IR, ICP-MS and measuring mass change. Effect of degradation products on osteogenesis were studied by culturing mesenchymal stem cells in the presence of media in which sol-gel samples had been immersed. Antimicrobial-loaded coatings showed strong activity against a wide range of clinically relevant bacterial and fungal pathogens with no loss of activity from antibiotic alone. The sol-gel coating demonstrated controlled release of antimicrobials and initial sol-gel coatings showed no loss of viability on MSCs with gentamicin containing coatings. Current work is underway investigating cytotoxicity of sol-gel compositions against MG-63 cells and primary osteoblasts. This research forms part of an extended study into a promising antimicrobial delivery strategy to prevent PJI. The implant coating has potential to advance PJI infection prevention, reducing future burden upon healthcare costs and patient wellbeing


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 88 - 88
1 Apr 2017
Oostlander A Moerman A Zadpoor A Schoeman M Nelissen R Valstar E
Full Access

Background. Periprosthetic osteolysis is the most common long-term complication of a total joint arthroplasty, often resulting in aseptic loosening of the implant. As we aim at developing a safe and minimally invasive implant refixation procedure, thorough characterisation of the properties of the periprosthetic tissue is needed. Methods. In this pilot study, the periprosthetic tissue of eleven patients undergoing hip revision surgery due to aseptic loosening was obtained. Histology, confocal microscopy, atomic force microscopy (AFM) and nanoindentation were performed to structurally and mechanically characterise the tissue. The study was approved by the Medical Ethical Committee of the Leiden University Medical Center. Results. Using a Sirius Red staining and Movat staining, samples were shown to contain collagen fibers and a ground substance consisting of glycosoaminoglycans and mucopolysaccharides. However, the relative proportions of these tissue components differed between as well as within samples. Confocal microscopy revealed differences in collagen fiber orientation and thickness between tissues. Certain samples showed increased collagen staining intensity as well as increased fiber directionality, indicating higher degrees of tissue maturation. Using AFM and nanoindentation, the Young's modulus of the tissue was determined, which is a measure of tissue stiffness. The ranges of Young's moduli observed (generally 0–250 kPa) were relatively low when compared to other collagen-rich soft tissues (e.g. 500 kPa in skin and even 25 MPa in pericardium). Since the periprosthetic tissue develops at a site of friction, cells at the bone-implant interface seem not able to produce a matrix with optimal strength and properties. Conclusions. This study provides new insights on the structural organization and mechanical properties of the periprosthetic tissue. Large inter-patient as well as intra-patient variations in tissue characteristics at all levels studied were observed, which strengthens the need for further research and underscores the need for tailored solutions in the field of treating aseptic loosening


In severe cases of total knee & hip arthroplasty, where off-the-shelf implants are not suitable (i.e., in cases with extended bone defects or periprosthetic fractures), 3D-printed custom-made knee & hip revision implants out of titanium or cobalt-chromium alloy represent one of the few remaining clinical treatment options. Design verification and validation of such custom-made implants is very challenging. Therefore, a methodology was developed to support surgeons and engineers in their decision on whether a developed design is suitable for the specific case. A novel method for the pre-clinical testing of 3D-printed custom-made knee implants has been established, which relies on the biomechanical test and finite element analysis (FEA) of a comparable clinically established reference implant. The method comprises different steps, such as identification of the main potential failure mechanism, reproduction of the biomechanical test of the reference implant via FEA, identification of the maximum value of the corresponding FEA quantity of interest at the required load level, definition of this value as the acceptance criterion for the FEA of the custom-made implant, reproduction of the biomechanical test with the custom-made implant via FEA, decision making for realization or re-design based on the acceptance criterion is fulfilled or not. Exemplary cases of custom-made knee & hip implants were evaluated with this new methodology. The FEA acceptance criterion derived from the reference implants was fulfilled in both custom-made implants and subsequent biomechanical tests verified the FEA results. The suggested method allows a quantitative evaluation of the biomechanical properties of custom-made knee & hip implant without performing physical bench testing. This represents an important contribution to achieve a sustainable patient treatment in complex revision total knee & hip arthroplasty with custom-made 3D printed implants in a safe and timely manner


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 19 - 19
1 Mar 2021
Lamb J Coltart O Adekanmbi I Stewart T Pandit H
Full Access

Abstract. Objective. To estimate the effect of calcar collar contact on periprosthetic fracture mechanics using a collared fully coated cementless femoral stem. Methods. Three groups of six composite femurs were implanted with a fully coated collared cementless femoral stem. Neck resection was increased between groups (group 1 = normal, group 2 = 3mm additional, group 3 = 6mm additional), to simulate failure to obtain calcar collar contact. Periprosthetic fractures of the femur were simulated using a previously published technique. Fracture torque and rotational displacement were measured and torsional stiffness and rotational work prior to fracture were estimated. High speed video recording identified if collar to calcar contact (CCC) occurred. Results between trials where calcar contact did and did not occur where compared using Mann-Whitney U tests. Results. Where CCC occurred versus where no CCC occurred, fracture torque was greater (47.33 [41.03 to 50.45] Nm versus 38.26 [33.70 to 43.60] Nm, p= 0.05), Rotational displacement was less (0.29 [0.27 to 0.39] rad versus 0.37 [0.33 to 0.49] rad, p= 0.07), torsional stiffness was greater (151.38 [123.04 to 160.42] rad. Nm-1 versus 96.86 [84.65 to 112.98] rad.Nm-1, p <0.01) and rotational work was similar (5.88 [4.67, 6.90] J versus 5.31 [4.40, 6.56] J, p= 0.6). Conclusions. Resistance to fracture and construct stiffness increased when a collared cementless stem made contact with the femoral calcar prior to fracture. These results demonstrate that calcar-collar contact and not a calcar collar per se, is crucial to maximising the protective effect of a medial calcar collar on the risk of post-operative periprosthetic fractures of the femur. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 25 - 25
1 Apr 2017
Schoeman M Oostlander A de Rooij K Löwik C Valstar E Nelissen R
Full Access

Background. Aseptic loosening of prostheses is the most common cause for failure in total joint arthroplasty. Particulate wear debris induces a non-stop inflammatory-like response resulting in the formation of a layer of fibrous periprosthetic tissue at the bone/implant interface. The current treatment is an invasive revision joint replacement surgery. However, this procedure has a high morbidity rate, therefore, a less invasive alternative is necessary. One approach could be to re-establish osseointegration of the joint prosthesis by inducing osteoblast differentiation in the periprosthetic tissue. Therefore, the aim of this study was to investigate the capacity of periprosthetic tissue cells to differentiate into the osteoblast lineage. Methods. Periprosthetic tissue samples were collected during revision surgery of aseptic loosened hip prostheses, after which cells were isolated by collagenase digestion. Of 14 different donors, cells from passage 1 till 3 were used for differentiation experiments. During 21 days, cells were cultured under normal and several osteogenic culture conditions. Cultures were stained for alkaline phosphatase (ALP) activity and mineral deposits in the extracellular matrix. Results. When cells were cultured in osteogenic medium, ALP staining was increased compared to normal culture medium in 12 donors. Mineralisation of the matrix was observed in 13 donors. Addition of bone morphogenetic protein 2 or 6 (BMP) increased the ALP staining even further in 4 donors, whereas the mineralisation increased by 2–3 fold in 2 different donors. Nevertheless, in 1 donor, addition of a specific GSK3β inhibitor (GIN) to the osteogenic medium or a combination of both GIN and BMP2 was required to induce mineralisation of the matrix. Conclusions. Periprosthetic tissue cells show characteristics of differentiation into the osteoblast lineage when cultured under osteogenic conditions. However, the responses to different osteogenic stimuli were donor specific. Level of Evidence. Level IV. Experimental research study


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 41 - 41
1 Mar 2021
Lamb J Coltart O Adekanmbi I Stewart T Pandit H
Full Access

Abstract. Objective. To estimate the effect of calcar collar separation on the likelihood of calcar collar contact during in vitro periprosthetic fracture. Methods. Three groups of six composite femurs were implanted with a collared cementless femoral stem. Neck resection was increased between groups (group 1 = normal, group 2 = 3mm additional, group 3 = 6mm additional), to simulate failure to obtain calcar collar contact. Prior to each trial, the distances between anterior (ACC) and posterior (PCC) collar and the calcar were measured. Periprosthetic fractures of the femur were simulated using a previously published technique. High speed video recording identified when collar to calcar contact (CCC) occurred. The ACC and PCC were compared between trials where the CCC was and was not achieved. Regression estimated the odds of failing to achieve CCC for a given ACC or PCC. Results. CCC was achieved prior to fracture in all cases in group one, 50% in group two and 0% in group three. The median (range) ACC for those trials where CCC was achieved was 0.40 (0.00, 3.37) mm versus 6.15 (3.06 to 6.88) mm, where CCC was not achieved (p <0.01). The median (range) PCC for those trials where CCC was achieved was 0.85 (0.00 to 3.71) mm versus 5.97 (2.23 to 7.46) mm, where CCC was not achieved (p <0.01). Binomial logistic regression estimated risk of failure to obtain CCC increased 3.8 fold (95% confidence interval 1.6 to 30.2, p <0.05) for each millimetre of PCC. Conclusions. Increased separation between collar and calcar reduced the likelihood of calcar collar contact during a simulated periprosthetic fracture of the femur. Surgeons should aim to achieve a calcar-collar distance of less than 1mm following implantation to ensure calcar collar contact during periprosthetic femoral fracture and to reduce the risk of fracture. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 96 - 96
1 Nov 2018
Atkins GJ
Full Access

Periprosthetic joint infections (PJI) are increasing in prevalence and are recognised as one of the most common modes of failure of joint replacements. Osteomyelitis arising from PJI is challenging to treat, difficult to cure and increases patient mortality 5-fold. PJI can have subtle symptoms and lie dormant or go undiagnosed for many years, suggesting persistent bacterial infection. Staphylococcus aureus is the most common pathogen causing PJI. Osteocytes are the most numerous and long-lived cell type in hard bone tissue. Our recent work has shown that S. aureus can infect and reside in human osteocytes without causing cell death, both experimentally and in bone samples from patients with PJI. Osteocytes respond to infection by the differential regulation of a large number of genes, suggesting previously unknown immune functions of this important cell type. S. aureus adapts during intracellular infection of osteocytes by adopting a quasi-dormant, small colony variant (SCV) phenotype, a property of several bacterial species known to cause PJI, which could contribute to persistent or silent infection. These findings shed new light on the aetiology of PJI and osteomyelitis in general. Further elucidation of the role of osteocytes in bone infection will hopefully lead to improved disease detection and management


Bone & Joint Research
Vol. 7, Issue 1 | Pages 12 - 19
1 Jan 2018
Janz V Schoon J Morgenstern C Preininger B Reinke S Duda G Breitbach A Perka CF Geissler S

Objectives. The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI). Methods. The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus. Results. The 16s rDNA test proved to be very robust and was able to provide a result in 97% of all samples within 25 minutes. The 16s rDNA test was able to diagnose PJI with a sensitivity of 87.5% and 82%, and a specificity of 100% and 89%, in the proof-of-principle and validation cohorts, respectively. The microbiological culture of synovial fluid achieved a sensitivity of 80% and a specificity of 93% in the validation cohort. Conclusion. The 16s rDNA test offers reliable intraoperative detection of all bacterial species within 25 minutes with a sensitivity and specificity comparable with those of conventional microbiological culture of synovial fluid for the detection of PJI. The 16s rDNA test performance is independent of possible blood contamination, culture time and bacterial species. Cite this article: V. Janz, J. Schoon, C. Morgenstern, B. Preininger, S. Reinke, G. Duda, A. Breitbach, C. F. Perka, S. Geissler. Rapid detection of periprosthetic joint infection using a combination of 16s rDNA polymerase chain reaction and lateral flow immunoassay: A Pilot Study. Bone Joint Res 2018;7:12–19. DOI: 10.1302/2046-3758.71.BJR-2017-0103.R2


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 42 - 42
1 Nov 2018
Kobayashi N Inaba Y Choe H Tomoyama A Ike H Saito T
Full Access

While stable long-term clinical results have been achieved in total joint arthroplasty, periprosthetic joint infection (PJI) has been actualized as difficult issue in this decade. For accurate diagnosis, it is important to establish standard criteria such as MSIS criteria, and it is prevailing now. As an issue involving PJI, however, the existence of viable, but non-culturable (VNC) bacteria must be noticed. It is difficult to identify the VNC state infection, because microbiologic culture result shows negative and other markers tend to be negative. Here, molecular diagnosis based on polymerase chain reaction (PCR) has certain role as potential diagnostic tools for such VNC infection. We have applied a real-time PCR system for the diagnosis of PJI, which is able to detect methicillin-resistant Staphylococcus (MRS) and distinguish gram-positive from gram-negative bacteria. The prominent advantage is that PCR is the singular way to identify MRS in such culture negative cases. Recent development of full-automatic PCR system may improve the time efficiency for routine application. In this presentation, we will show the overall sensitivity and specificity of our PCR system for diagnosing PJI and discuss the current problem and future prospect


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 74 - 74
1 Aug 2012
Mak J Moazen M Jones A Jin Z Tsirdis E Wilcox R
Full Access

Periprosthetic femoral fractures can occur as a complication of total hip arthroplasty and are often challenging to treat as the mechanical scenario is influenced by the presence of the metal prosthesis within the bone. This research focuses on finding the optimum fixation for transverse, Vancouver type B1 periprosthetic fractures, stabilised using locking plates and secured using screws. The aim of this study was to experimentally validate a computer model of a human femur, develop that model to represent a periprosthetic femoral fracture fixation and show how the model could be used to indicate differences between plating techniques. In the first development stage, both a laboratory model and a finite element model were developed to evaluate the mechanical behaviour of an intact composite femur under axial loading. Axial strains were recorded along the medial length of the femur in both cases and compared to provide validation for the computational model predications. The computational intact femur model was then modified to include a cemented total hip replacement, and further adapted to include a periprosthetic fracture stabilised using a locking plate, with unicortical screws above, and bicortical screws below the transverse fracture. For the intact femur case, the experimental and computational strain patterns correlated well with an average difference of 16%. Following the inclusion of the stem, there was a reduction in the strain in the region of the prosthesis reducing by an average of 45%. There was also a large increase in bulk stiffness with the introduction of the prosthesis. When the fracture and plate fixation were included, there was little difference in the proximal strain where the stem dominated, and the strains in the distal region were found to be highly sensitive to the distribution of the screws. The results of this study indicate that screw configuration is an important factor in periprosthetic fracture fixation. A laboratory model of the periprosthetic facture case is now under development to further validate the computational models and the two approaches will then be used to determine optimum fixation methods for a range of clinical scenarios


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 75 - 75
1 Apr 2018
Matsuura M Schmidutz F Sprecher C Müller P Chevalier Y
Full Access

Introduction. Stemless shoulder implants have recently gained increasing popularity. Advantages include an anatomic reconstruction of the humerus with preservation of bone stock for upcoming revisions. Several implant designs have been introduced over the last years. However, only few studies evaluated the impact of the varying designs on the load transfer and bone remodeling. The aim of this study was to compare the differences between two stemless shoulder implant designs using the micro finite element (µFE) method. Materials and Methods. Two cadaveric human humeri (low and high bone mineral density) were scanned with a resolution of 82µm by high resolution peripheral quantitative computer tomography (HR-pQCT). Images were processed to allow virtual implantation of two types of reverse-engineered stemless humeral implants (Implant 1: Eclipse, Arthrex, with fenestrated cage screw and Implant 2: Simpliciti, Tornier, with three fins). The resulting images were converted to µFE models consisting of up to 78 million hexahedral elements with isotropic elastic properties based on the literature. These models were subjected to two loading conditions (medial and along the central implant axis) and solved for internal stresses with a parallel solver (parFE, ETH Zurich) on a Linux Cluster. The bone tissue stresses were analysed according to four subregions (dividing plane: sagittal and frontal) at two depths starting from the bone-implant surface and the distal region ending distally from the tip of Implant 1 (proximal, distal). Results. Medial loads produced higher bone tissue stresses when loading was applied along the implant axis. This was more prominent in the lower density bone, causing more than 3 times higher stresses in the highest region for both implants. Bone tissue stresses were also shown to be higher in the low density specimen, especially in the distal zone. The maximum bone tissue stress ratio for low/high density bone reached 4.4 below Implant 1 and 2.2 below Implant 2, occurring both with a medially-directed load. For both implants, the highest bone tissue stresses were predicted in the distal region than in the proximal region, with larger distal-to-proximal stress ratios below Implant 1 than Implant 2 (3.8 and 1.7, respectively). Discussion. Our µFE analyses show that the implant anchorage design clearly influences load transfer to the periprosthetic bone. The long fenestrated cage screw of Implant 1 showed more direct distal stress transfer, which may lead to stress shielding in the proximal region, in a larger extent than Implant 2 which tends to distribute loads more evenly. Furthermore, periprosthetic bone quality appears to be an important factor for load transfer, causing dramatic changes due to different loading condition and implant geometry. These findings will help further improve anchorage design for stemless humeral heads in order to minimize bone remodeling and the long-term fixation of these implants


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 41 - 41
1 Nov 2018
Takagi M
Full Access

Immune response in periprosthetic joint infection (PJI) is diverse. Resident macrophage and/or wandering monocyte are superb guardians to sense microbial attacks, take invaders and alarm the danger. Neutrophils are refined but momentary fighters to kill microbes with projectile weapons as well as predation. The swift action is usually effective at the forefront to prevent expansion of infectious foci. However, such characteristics often evokes overshooting via self-defeating of pus, thus leading to crucial soft tissue damage in the acute phase. Intervention of monocyte/macrophages follow and act as wise organizers. In addition, stromal fibroblasts also act in front for host defence. They equip innate immune sensors (TLRs, NLRs), which can sense dangers and trigger off inflammatory response, but also is usually self-regulated. These sensors not only interact each other, but also have possible contribution to selective autophagy (xenophagy and lysophagy) in PJI. In this presentation, overview of pathology in PJI will be summarized with a special attention to innate immune sensors (TLRs and NLRs), and selective autophagy


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 64 - 64
1 Jan 2017
Somodi S Andersen K Ebskov L Rasmusen P Muharemovic O Penny J
Full Access

The CCI mobile bearing ankle implant used at our orthopedic department 2010–2013, was abandoned due to failures and findings of bone loss at revision. The aim of this study was to a) Determine our true revision rate, b) Investigate accuracy of measuring prevalence, size and location of periprosthetic bone cysts through X-ray and CT and c) Relate these findings to implant alignment and patient reported outcome measurements (PROMs). 51 primary surgeries were performed, prior to this study 8 had been revised. Out of 43 un-revised patients, 36 were enrolled and underwent evaluation with metal artefact reduction CT-scans and conventional X-ray. They filled out 3 PROMs; SEFAS, SF-12, EQ-5D. Cyst volume larger than 0.1 ml was measured using VITREA volume tools for CT-scans and calculation of spherical volume for X-rays; using AP- and lateral projections. Location of lesions was recorded, according to their position relative to the implant. Medial-/lateral- and anterior-/posterior tilt of the implant parts was measured using IMPAX built in measuring tools, applied to AP- and lateral X-ray projection. The relation between lesions location and alignment of components was analyzed by logistic regression. Bias and ICC estimation between CT and X-ray was analyzed by mixed effect model. Log transformation was used to fit the normal distribution assumption. PROMs association to osteolytic volume was analyzed by linear- and logistic regression. P-values of 0.05 were considered statistically significant. Finding large osteolytic lesions caused 4 additional patients to undergo revision and 7 are being monitored due to high risk of failure. Of the original 51 implants 14 have been revised. 8 cases because of osteolytic lesions and aseptic loosening (true revisions w. exchange of components or bone transplants), 3 periprosthetic fractures (2 non-traumatic fractures) and 3 cases of exostosis. The 3- and 5 year revision rate was 14% and 16% for true revisions and 17% and 27% overall. Cystic lesions were found in 81% of participants. Total cyst-volume was on average 13% larger on X-ray, however this difference was not significant (p = 0.55), with intraclass correlation being 0.66. Total cystic volume was not significantly related to PROM-scores (P 0.16–0.5). Location of cysts showed association with alignment of components (P 0.02–0.08). Mean tibia component anterior tilt was 89 degrees (SD 4). Mean medial tilt was 91 degrees (SD 3) for the tibial and 90 degrees (SD 4) for the talar component. The implant investigated performs below standard, compared to public registries. 1, 2. that report overall 5 year revision rates at 5 – 6.5%. We obtained larger measurements from X-rays than CT, unlike previous studies comparing these modalities. Cysts were common and large. Correlation between lesion location and alignment of implant, with valgus and anterior tilt of components causing more lesions in adjacent zones, may suggest a link between implant failure and alignment of components