This is a retrospective study of 612 cases of iatropathic injury to
We present a series of patients who have had secondary reconstruction of war injuries to the upper and lower limbs, sustained during the Iraq and Afghanistan conflicts. All patients were seen at the combined Peripheral Nerve Injuries Clinic at the Defence Medical Centre for Rehabilitation, Headley Court. All surgery was performed at Odstock Hospital. Procedures include scar excision and neurolysis (all patients), release of scar contractures, tenolysis, tendon transfers, revision nerve grafts, excision of neuroma, and soft tissue reconstruction using pedicled or free flaps.Introduction
Material and Methods
We describe 261 peripheral nerve injuries sustained
in war by 100 consecutive service men and women injured in Iraq
and Afghanistan. Their mean age was 26.5 years (18.1 to 42.6), the
median interval between injury and first review was 4.2 months (mean
8.4 months (0.36 to 48.49)) and median follow-up was 28.4 months
(mean 20.5 months (1.3 to 64.2)). The nerve lesions were predominantly
focal prolonged conduction block/neurapraxia in 116 (45%), axonotmesis
in 92 (35%) and neurotmesis in 53 (20%) and were evenly distributed
between the upper and the lower limbs. Explosions accounted for
164 (63%): 213 (82%) nerve injuries were associated with open wounds.
Two or more main nerves were injured in 70 patients. The ulnar,
common peroneal and tibial nerves were most commonly injured. In
69 patients there was a vascular injury, fracture, or both at the
level of the nerve lesion. Major tissue loss was present in 50 patients:
amputation of at least one limb was needed in 18. A total of 36 patients
continued in severe neuropathic pain. This paper outlines the methods used in the assessment of these
injuries and provides information about the depth and distribution
of the nerve lesions, their associated injuries and neuropathic
pain syndromes.
A series of 26 children was referred to our specialist unit with a ‘pink pulseless hand’ following a supracondylar fracture of the distal humerus after a mean period of three months (4 days to 12 months) except for one referred after almost three years. They were followed up for a mean of 15.5 years (4 to 26). The neurovascular injuries and resulting impairment in function and salvage procedures were recorded. The mean age at presentation was 8.6 years (2 to 12). There were eight girls and 18 boys. Only four of the 26 patients had undergone immediate surgical exploration before referral and three of these four had a satisfactory outcome. In one child the brachial artery had been explored unsuccessfully at 48 hours. As a result 23 of the 26 children presented with established ischaemic contracture of the forearm and hand. Two responded to conservative stretching. In the remaining 21 the antecubital fossa was explored. The aim of surgery was to try to improve the function of the hand and forearm, to assess nerve, vessel and muscle damage, to relieve entrapment and to minimise future disturbance of growth. Based on our results we recommend urgent exploration of the vessels and nerves in a child with a ‘pink pulseless hand’, not relieved by reduction of a supracondylar fracture of the distal humerus and presenting with persistent and increasing pain suggestive of a deepening nerve lesion and critical ischaemia.