Advertisement for orthosearch.org.uk
Results 1 - 20 of 134
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 66 - 73
1 May 2024
Chaudhry F Daud A Greenberg A Braunstein D Safir OA Gross AE Kuzyk PR

Aims. Pelvic discontinuity is a challenging acetabular defect without a consensus on surgical management. Cup-cage reconstruction is an increasingly used treatment strategy. The present study evaluated implant survival, clinical and radiological outcomes, and complications associated with the cup-cage construct. Methods. We included 53 cup-cage construct (51 patients) implants used for hip revision procedures for pelvic discontinuity between January 2003 and January 2022 in this retrospective review. Mean age at surgery was 71.8 years (50.0 to 92.0; SD 10.3), 43/53 (81.1%) were female, and mean follow-up was 6.4 years (0.02 to 20.0; SD 4.6). Patients were implanted with a Trabecular Metal Revision Shell with either a ZCA cage (n = 12) or a TMARS cage (n = 40, all Zimmer Biomet). Pelvic discontinuity was diagnosed on preoperative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed, with failure defined as revision of the cup-cage reconstruction. Results. The five-year all-cause survival for cup-cage reconstruction was 73.4% (95% confidence interval (CI) 61.4 to 85.4), while the ten- and 15-year survival was 63.7% (95% CI 46.8 to 80.6). Survival due to aseptic loosening was 93.4% (95% CI 86.2 to 100.0) at five, ten, and 15 years. The rate of revision for aseptic loosening, infection, and dislocation was 3/53 (5.7%), 7/53 (13.2%), and 6/53 (11.3%), respectively. The mean leg length discrepancy improved (p < 0.001) preoperatively from a mean of 18.2 mm (0 to 80; SD 15.8) to 7.0 mm (0 to 35; SD 9.8) at latest follow-up. The horizontal and vertical hip centres improved (p < 0.001) preoperatively from a mean of 9.2 cm (5.6 to 17.5; SD 2.3) to 10.1 cm (6.2 to 13.4; SD 2.1) and 9.3 cm (4.7 to 15.8; SD 2.5) to 8.0 cm (3.7 to 12.3; SD 1.7), respectively. Conclusion. Cup-cage reconstruction provides acceptable outcomes in the management of pelvic discontinuity. One in four constructs undergo revision within five years, most commonly for periprosthetic joint infection, dislocation, or aseptic loosening. Cite this article: Bone Joint J 2024;106-B(5 Supple B):66–73


Bone & Joint Open
Vol. 3, Issue 11 | Pages 867 - 876
10 Nov 2022
Winther SS Petersen M Yilmaz M Kaltoft NS Stürup J Winther NS

Aims. Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS). Methods. Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)). Results. There were eight subsequent surgical interventions. Two failures (5%) of the triflange acetabular components were both revised because of deep infection. There were seven (18%) patients with dislocation, and five (13%) of these were treated with a constraint liner. One patient had a debridement, antibiotics, and implant retention (DAIR) procedure. In 34 (92%) hips the custom-made triflange component was considered stable, with a healed pelvic discontinuity with no aseptic loosening at midterm follow-up. Mean HHS was 80.5 (48 to 96). Conclusion. The performance of the custom triflange implant in this study is encouraging, with high rates of discontinuity healing and osteointegration of the acetabular implant with no aseptic loosening at midterm follow-up. However, complications are not uncommon, particularly instability which we successfully addressed with constrained liners. Cite this article: Bone Jt Open 2022;3(11):867–876


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims. The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Methods. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants. Results. The median amount of bone removed for TMARS reconstructions was significantly greater than for CTAC implants (9.07 cm. 3. (interquartile range (IQR) 5.86 to 21.42) vs 1.16 cm. 3. (IQR 0.42 to 3.53) (p = 0.004). There was no significant difference between the median overall implant-bone apposition between TMARS reconstructions and CTAC implants (54.8 cm. 2. (IQR 28.2 to 82.3) vs 56.6 cm. 2. (IQR 40.6 to 69.7) (p = 0.683). However, there was significantly more implant-bone apposition within the residual acetabulum (45.2 cm. 2. (IQR 28.2 to 72.4) vs 25.5 cm. 2. (IQR 12.8 to 44.1) (p = 0.001) and conversely significantly less apposition with the outer cortex of the pelvis for TMARS implants compared with CTAC reconstructions (0 cm. 2. (IQR 0 to 13.1) vs 23.2 cm. 2. (IQR 16.4 to 30.6) (p = 0.009). The mean centre of rotation of the hip of TMARS reconstructions differed by a mean of 11.1 mm (3 to 28) compared with CTAC implants. Conclusion. In using TMARS, more bone is removed, thus achieving more implant-bone apposition within the residual acetabular bone. In CTAC implants, the amount of bone removed is minimal, while the implant-bone apposition is more evenly distributed between the residual acetabulum and the outer cortex of the pelvis. The differences suggest that these implants used to treat pelvic discontinuity might achieve short- and long-term stability through different biomechanical mechanisms. Cite this article: Bone Joint J 2024;106-B(5 Supple B):74–81


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 195 - 200
1 Feb 2014
Abolghasemian M Tangsaraporn S Drexler M Barbuto R Backstein D Safir O Kuzyk P Gross A

The use of ilioischial cage reconstruction for pelvic discontinuity has been replaced by the Trabecular Metal (Zimmer, Warsaw, Indiana) cup-cage technique in our institution, due to the unsatisfactory outcome of using a cage alone in this situation. We report the outcome of 26 pelvic discontinuities in 24 patients (20 women and four men, mean age 65 years (44 to 84)) treated by the cup-cage technique at a mean follow-up of 82 months (12 to 113) and compared them with a series of 19 pelvic discontinuities in 19 patients (18 women and one man, mean age 70 years (42 to 86)) treated with a cage at a mean follow-up of 69 months (1 to 170). The clinical and radiological outcomes as well as the survivorship of the groups were compared. In all, four of the cup-cage group (15%) and 13 (68%) of the cage group failed due to septic or aseptic loosening. The seven-year survivorship was 87.2% (95% confidence interval (CI) 71 to 103) for the cup-cage group and 49.9% (95% CI 15 to 84) for the cage-alone group (p = 0.009). There were four major complications in the cup-cage group and nine in the cage group. Radiological union of the discontinuity was found in all successful cases in the cup-cage group and three of the successful cage cases. Three hips in the cup-cage group developed early radiological migration of the components, which stabilised with a successful outcome. Cup-cage reconstruction is a reliable technique for treating pelvic discontinuity in mid-term follow-up and is preferred to ilioischial cage reconstruction. If the continuity of the bone graft at the discontinuity site is not disrupted, early migration of the components does not necessarily result in failure. Cite this article: Bone Joint J 2014;96-B:195–200


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1442 - 1448
1 Nov 2018
Hipfl C Janz V Löchel J Perka C Wassilew GI

Aims. Severe acetabular bone loss and pelvic discontinuity (PD) present particular challenges in revision total hip arthroplasty. To deal with such complex situations, cup-cage reconstruction has emerged as an option for treating this situation. We aimed to examine our success in using this technique for these anatomical problems. Patients and Methods. We undertook a retrospective, single-centre series of 35 hips in 34 patients (seven male, 27 female) treated with a cup-cage construct using a trabecular metal shell in conjunction with a titanium cage, for severe acetabular bone loss between 2011 and 2015. The mean age at the time of surgery was 70 years (42 to 85) and all patients had an acetabular defect graded as Paprosky Type 2C through to 3B, with 24 hips (69%) having PD. The mean follow-up was 47 months (25 to 84). Results. The cumulative five-year survivorship of the implant with revision for any cause was 89% (95% confidence interval (CI) 72 to 96) with eight hips at risk. No revision was required for aseptic loosening; however, one patient with one hip (3%) required removal of the ischial flange of the cage due to sciatic nerve irritation. Two patients (6%; two hips) suffered from hip dislocation, whereas one patient (one hip) required revision surgery with cement fixation of a dual-mobility acetababular component into a well-fixed cup-cage construct. Two patients (6%; two hips) developed periprosthetic infection. One patient was successfully controlled with a two-stage revision surgery, while the other patient underwent excision arthroplasty due to severe medical comorbidities. For the whole series, the Harris Hip Score significantly improved from a mean of 30 (15 to 51) preoperatively to 71 (40 to 89) at the latest follow-up (p < 0.001). Conclusion. Our findings suggest that cup-cage reconstruction is a viable option for major segmental bone defects involving the posterior column and PD. It allows adequate restoration of the acetabulum centre with generally good stability and satisfactory postoperative function. Instability and infection remain drawbacks in these challenging revision cases. Cite this article: Bone Joint J 2018;100-B:1442–48


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 4 - 4
23 Jun 2023
Gross A Safir O Kuzyk P
Full Access

Pelvic discontinuity is a separation through the acetabulum with the ilium displacing superiorly and the ischium/pubis displacing inferiorly. This is a biomechanically challenging environment with a high rate of failure for standard acetabular components. The cup-cage reconstruction involves the use of a highly porous metal cup to achieve biological bone ingrowth on both sides of the pelvic discontinuity and an ilioischial cage to provide secure fixation across the discontinuity and bring the articulating hip center to the correct level. The purpose of this study was to report long term follow up of the use of the cup-cage to treat pelvic discontinuity. All hip revision procedures between January 2003 and January 2022 where a cup-cage was used for a hip with a pelvic discontinuity were included in this retrospective review. All patients received a Trabecular Metal Revision Shell with either a ZCA cage or TMARS cage (Zimmer-Biomet Inc.). Pelvic discontinuity was diagnosed on pre-operative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed with failure defined as revision of the cup-cage reconstruction. Fifty-seven cup-cages in 56 patients were included with an average follow-up of 6.25 years (0.10 to 19.98 years). The average age of patients was 72.09 years (43 to 92 years) and 70.2% of patients were female. The five year Kaplan-Meier survival was 92.0% (95% CI 84.55 to 99.45) and the ten year survival was 80.5% (95% CI 58.35 to 102.65). There were 5 major complications that required revision of the cup-cage reconstruction (3 infections and 2 mechanical failures). There were 9 complications that required re-operation without revision of the cup-cage reconstruction (5 dislocations, 3 washouts for infection and one femoral revision for aseptic loosening). In our hands the cup-cage reconstruction has provided a reliable tool to address pelvic discontinuity with an acceptable complication rate


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 109 - 113
1 Nov 2013
Petrie J Sassoon A Haidukewych GJ

Pelvic discontinuity represents a rare but challenging problem for orthopaedic surgeons. It is most commonly encountered during revision total hip replacement, but can also result from an iatrogentic acetabular fracture during hip replacement. The general principles in management of pelvic discontinuity include restoration of the continuity between the ilium and the ischium, typically with some form of plating. Bone grafting is frequently required to restore pelvic bone stock. The acetabular component is then impacted, typically using an uncemented, trabecular metal component. Fixation with multiple supplemental screws is performed. For larger defects, a so-called ‘cup–cage’ reconstruction, or a custom triflange implant may be required. Pre-operative CT scanning can greatly assist in planning and evaluating the remaining bone stock available for bony ingrowth. Generally, good results have been reported for constructs that restore stability to the pelvis and allow some form of biologic ingrowth. Cite this article: Bone Joint J 2013;95-B, Supple A:109–13


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 110 - 110
1 May 2019
Abdel M
Full Access

Pelvic discontinuity is defined as a separation of the ilium superiorly from the ischiopubic segment inferiorly. In 2018, the main management options include the following: 1) hemispheric acetabular component with posterior column plating, 2) cup-cage construct, 3) pelvic distraction, and 4) custom triflange construct. A hemispheric acetabular component with posterior column plating is a good option for acute pelvic discontinuities. However, healing potential is dependent on host's biology and characteristic of the discontinuity. The plate should include 3 screws above and 3 screws below the discontinuity with compression in between. In addition, the hemispherical acetabular component should have at least 50% host bone contact with 3–4 screws superior and 2–3 screws inferior to the discontinuity. On the other hand, a cup-cage construct can be used in any pelvic discontinuity. This includes a highly porous acetabular component placed on remaining host bone. Occasionally, highly porous metal augments are used to fill the remaining bone defects. A supplemental cage is placed over the acetabular component, spanning the discontinuity from the ilium to the ischium. A polyethylene liner is then cemented into place with antibiotic-loaded bone cement. Rarely, pelvic distraction may be needed. With this technique, pelvic stability is obtained via distraction of the discontinuity by elastic recoil of the pelvis and by fixing the superior hemipelvis and inferior hemipelvis to a highly porous metal cup or augment with screws, thereby unitizing the superior and inferior aspects of the pelvis. In essence, the cup acts as a segmental replacement of the acetabulum, with healing occurring to the cup or augment, resulting in a unitised hemipelvis. Frequently, the discontinuity itself does not achieve bony healing. Finally, custom triflange constructs are being utilised with increasing frequency. Triflange cups are custom-designed, porous and/or hydroxyapatite coated, titanium acetabular components with iliac, ischial, and pubic flanges. Rigid fixation promotes healing of the discontinuity and biologic fixation of the implant. It requires a CT scan, dedicated preoperative design, and fabrication costs


Bone & Joint Open
Vol. 4, Issue 2 | Pages 53 - 61
1 Feb 2023
Faraj S de Windt TS van Hooff ML van Hellemondt GG Spruit M

Aims. The aim of this study was to assess the clinical and radiological results of patients who were revised using a custom-made triflange acetabular component (CTAC) for component loosening and pelvic discontinuity (PD) after previous total hip arthroplasty (THA). Methods. Data were extracted from a single centre prospective database of patients with PD who were treated with a CTAC. Patients were included if they had a follow-up of two years. The Hip Disability and Osteoarthritis Outcome Score (HOOS), modified Oxford Hip Score (mOHS), EurQol EuroQoL five-dimension three-level (EQ-5D-3L) utility, and Numeric Rating Scale (NRS), including visual analogue score (VAS) for pain, were gathered at baseline, and at one- and two-year follow-up. Reasons for revision, and radiological and clinical complications were registered. Trends over time are described and tested for significance and clinical relevance. Results. A total of 18 females with 22 CTACs who had a mean age of 73.5 years (SD 7.7) were included. A significant improvement was found in HOOS (p < 0.0001), mOHS (p < 0.0001), EQ-5D-3L utility (p = 0.003), EQ-5D-3L NRS (p = 0.013), VAS pain rest (p = 0.008), and VAS pain activity (p < 0.0001) between baseline and final follow-up. Minimal clinically important improvement in mOHS and the HOOS Physical Function Short Form (HOOS-PS) was observed in 16 patients (73%) and 14 patients (64%), respectively. Definite healing of the PD was observed in 19 hips (86%). Complications included six cases with broken screws (27%), four cases (18%) with bony fractures, and one case (4.5%) with sciatic nerve paresthesia. One patient with concurrent bilateral PD had revision surgery due to recurrent dislocations. No revision surgery was performed for screw failure or implant breakage. Conclusion. CTAC in patients with THA acetabular loosening and PD can result in stable constructs and significant improvement in functioning and health-related quality of life at two years' follow-up. Further follow-up is necessary to determine the mid- to long-term outcome. Cite this article: Bone Jt Open 2023;4(2):53–61


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 74
1 Mar 2002
Stiehl J
Full Access

This report reviews the long-term results of treating acetabula with unusually severe problems, such as pelvic discontinuity or major column loss after failed total hip arthroplasty (THA) and reconstruction problems. Loss of acetabular bone stock results from removal of bone during the original procedure, prosthetic failure, and osteolysis. In massive structural failure, the acetabular rim, quadrilateral plate, and associated columns become deficient. At worst, this may be combined with pelvic discontinuity and disruption of the ilium and ischium. Prosthetic protrusio may result from fixation loss and be associated with scarring of the femoral vessels, femoral nerve, ureter and bowel. A variety of implants has been used to in ace-tabular reconstruction. The results are often poor because of insufficient bone stock to support the implant. In a consecutive series of 251 THA revisions done between 1988 and 1996, 17 patients were treated for major pelvic column loss, pelvic discontinuity or both. In five patients, a posterolateral approach without trochanteric osteotomy was used. The extensile triradiate approach with ilioinguinal extension was used in 12 patients in whom severe prosthetic protrusio increased the risk of intrapelvic iatrogenic injury. A long anterior column pelvic plate was applied. A posteriorly placed AO 4.5-mm pelvic reconstruction plate with 10 to 12 holes was used in nine cases of pelvic discontinuity and in five cases of posterior column bone loss. This plate extended from the most inferior extent of the ischium across the wall of the posterior column to a point high on the ilium. Anterior column fixation was done in eight of nine cases of pelvic discontinuity and all three cases of anterior column deficiency. This called for an 8 to 12-hole 3.5-mm AO pelvic reconstruction plate that extended from the pubic symphysis across the pelvic rim. This spanned the anterior column defect, ranging from 4 cm to 8 cm, to the medial wall of the ilium. Bulk allograft was used in 16 of the 17 patients. The patient in whom allograft was not used had pelvic discontinuity following pelvic irradiation. Whole pelvic acetabular transplants were used in seven with severe bone loss or following resection for chondrosarcoma and the other for pigmented or villonodular synovitis. Posterior segmental acetabular allograft was used in two cases of posterior column absence. Femoral heads were used in two posterior column defects, three pelvic discontinuities with anterior column defect, and two anterior column defects. Acetabular components were cemented in six of seven whole bulk ace-tabular transplants, six of nine pelvic discontinuities and two anterior column defects. Cemented implants were classified as loose if there was a complete radiolucent line at the bone cement interface, measurable component migration or measurable change in position. Uncemented acetabular components were considered loose if component migration had occurred or screws had broken. Pelvic plates were considered loose if there was measurable migration or change in plate position or if fixation screws had backed out or broken. Radiographic union was considered present when bridging callus or trabecular bone was visible across the discontinuity site. Junctional healing was considered probable when radiographs did not show obvious signs of failure. Grafts were considered unhealed if there was obvious displacement, bone gaps or hardware breakage. Seven of the nine patients with pelvic discontinuity had late evidence of healing of the fracture and allograft consolidation. One underwent removal of the graft at three weeks after developing acute postoperative infection: early junctional healing of a whole bulk acetabular allograft required an osteotomy to break up the interface. Another patient, who underwent removal of the graft and implant at three months for chronic infection, had consolidation of a whole bulk ace-tabular allograft. One patient underwent revision of a pressfitted acetabular component at 60 months, and the pelvic discontinuity was solidly united. In a fourth patient, explored at 124 months for loosening of a cemented cup, there was near complete dissolution of the graft posterior acetabular wall and a loose posterior pelvic plate. In a patient with pelvic discontinuity after radiation therapy for uterine carcinoma, satisfactory healing of the pelvic discontinuity was confirmed at 32 months, when excisional arthroplasty for late chronic infection followed urinary sepsis. Seven patients had major column loss with severe cavitary defects. Consolidation of the allograft was noted in all seven within the first 12 months of follow-up. Revision (47%) was required for infection in three patients, implant loosening in four, and recurrent implant dislocation in one. The four loose cups were revised to a cemented all-polyethylene component. All four implants had been placed on less than 50% host bone. None of the four has required subsequent revision. Dislocation postoperatively occurred in eight patients. In six, the extensile triradiate approach had been used. This approach led to dislocation in 50%. The main reasons for using the extensile triradiate approach were to avoid catastrophic injuries by direct exposure of vital structures and to allow stable anterior column plate fixation. In that no neurovascular injuries occurred and stable durable allograft consolidation and healing of pelvic discontinuity took place, these goals were largely met. Three patients developed late sciatic palsy. In one, plaster immobilisation had possibly caused direct pressure over the fibular head and led to chronic peroneal palsy. The other two underwent additional exploration of the sciatic nerve for late entrapment caused by migration of screws from the posterior column plate. Two patients developed bladder infections postoperatively. Another developed superficial phlebitis of the lower leg. Acetabular revision for loosening was necessary in three of seven cementless implants, while only two of 10 cemented implants failed. The acetabular component should be cemented into the allograft when more than 50% of the prosthetic interface is non-viable. Virtually all graft material, including dense cortical grafts, may ultimately fail if used for implant fixation. Patients should be told about the inevitable risks. However, techniques used led to stable healing of the pelvic discontinuity in most cases. Long pelvic plates that securely stabilise the pelvis and allografts carefully opposed to host bone may explain the relative success in this series


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 63 - 63
1 May 2014
Paprosky W
Full Access

Stabilisation of a pelvic discontinuity with a posterior column plate with or without an associated acetabular cage sometimes results in persistent micromotion across the discontinuity with late fatigue failure and component loosening. Acetabular distraction offers an alternative technique for reconstruction in cases of severe bone loss with an associated pelvic discontinuity. We describe the technique of acetabular distraction with porous tantalum components and evaluate its survival, function and complication rate in patients undergoing revision surgery for chronic pelvic discontinuity. Between 2002 and 2006, we treated 28 patients with a chronic pelvic discontinuity acetabular reconstruction using acetabular distraction. A porous tantalum elliptical acetabular component was used alone or with an associated modular porous tantalum augment in all patients. Three patients died and five patients were lost to follow-up before two years. The remaining twenty patients were followed semiannually for a minimum of two years (average, 4.5 years; range, 2–7 years) with clinical pain and walking scores as well as radiographic evaluation for loosening, migration or failure. In the remaining twenty patients available for follow-up, one patient did require re-revision for aseptic loosening. Fifteen patients remained radiographically stable at last follow-up. Four patients had early migration of their acetabular component but thereafter remained radiographically stable and clinically asymptomatic. The average improvement using the modified Merle d'Aubigne – Postel pain and ambulation score was 6.6 (range, 3.3–9.6). There were no postoperative dislocations; however, we did encounter one infection, one vascular injury and one bowel injury. In this series, the use of acetabular distraction with porous tantalum components provides a biologic alternative to cage constructs with more predictable clinical results (average follow-up 4.5 years) for reconstruction of severe acetabular defects with associated pelvic discontinuity


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 100 - 100
1 Jul 2014
Paprosky W
Full Access

Stabilisation of a chronic pelvic discontinuity with a posterior column plate with or without an associated acetabular cage sometimes results in persistent micromotion across the discontinuity with late fatigue failure and component loosening. We believe that these chronic discontinuities are really chronic fracture non-unions incapable of healing. Acetabular distraction offers an alternative technique for reconstruction in cases of severe bone loss with an associated pelvic discontinuity. We describe the technique of acetabular distraction with porous tantalum components and evaluate its survival, function and complication rate in patients undergoing revision surgery for chronic pelvic discontinuity. Between 2002 and 2006, we treated 28 patients with a chronic pelvic discontinuity acetabular reconstruction using acetabular distraction. A porous tantalum elliptical acetabular component was used alone or with an associated modular porous tantalum augment in all patients. Three patients died and five patients were lost to follow up before two years. The remaining twenty patients were followed semiannually for a minimum of two years (average, 5.5 years; range, 2–9 years) with clinical pain and walking scores as well as radiographic evaluation for loosening, migration or failure. In the remaining twenty patients available for follow up, one patient did require re-revision for aseptic loosening. Fifteen patients remained radiographically stable at last follow up. Four patients had early migration of their acetabular component but thereafter remained radiographically stable and clinically asymptomatic. The average improvement using the modified Merle d'Aubigne – Postel pain and ambulation score was 6.6 (range, 3.3–9.6). There were no post-operative dislocations; however, we did encounter one infection, one vascular injury and one bowel injury. In this series, the use of acetabular distraction with porous tantalum components provides a biologic alternative to cage constructs with more predictable clinical results (average follow up 5.5 years) for reconstruction of severe acetabular defects with associated pelvic discontinuity


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 70 - 70
1 Oct 2018
Paprosky WG Sheth NP Melnic CM Brown NM Sporer SM
Full Access

Introduction. During revision total hip arthroplasty, successful treatment of acetabular bone loss with an associated chronic pelvic discontinuity is dependent upon the remaining bone stock, stability of the construct, potential for biologic fixation, and healing of the discontinuity. Several techniques have been described for the treatment of this clinical entity; the authors recommend the use of acetabular distraction technique in conjunction with a jumbo cup with or without augments. The authors recently evaluated the minimum two-year follow-up of acetabular distraction technique for the treatment of chronic pelvic discontinuity. In the process, a chronic pelvic discontinuity classification was created based on the type of reconstruction required. The purpose of this study is to introduce the initial observations of this novel classification system. Methods. Patients from two academic institutions undergoing acetabular distraction for chronic pelvic discontinuity were identified between January 2002 and December 2013 with minimum 2-year follow-up. Radiographs at latest follow-up were compared to serial radiographs from the index surgery. Data was collected by chart review in accordance with institutional IRB protocol from both institutions. Results. A cohort of 32 patients had minimum 2-year (range, 2.1–13.3 years) follow-up. Mean patient age was 67 years (range, 44–86) and 87% were female. All patients had a chronic pelvic discontinuity with the following bone loss patterns: 7 (22%) type IIC, 5 (15%) type IIIA and 20 (63%) type IIIB. At time of final follow-up, radiographs demonstrated 22 of 32 patients (69%) had evidence of a healed discontinuity. Chronic Pelvic Discontinuity Classification. The classification mirrors the Paprosky classification and requires a more complex reconstruction with each progressive type. For the 20 patients with a type IIIB acetabular bone loss pattern, the new classification was applied. The distribution of classification types was as follows: type I 6 (30%); type II 5 (25%); type IIIA 4 (20%); type IIIB 5 (25%); and type IV 0. Overall, 70% (14) patients required the use of an augment for acetabular reconstruction. Conclusions. Acetabular distraction has been established as an effective method by which to treat chronic pelvic discontinuity. The new classification helps to determine the complexity of reconstruction required for each discontinuity, especially when assessing the most severe acetabular defects (Paprosky IIIB). The authors advocate acetabular distraction with a jumbo cup and modular porous metal augments as the preferred treatment for acetabular bone loss with associated chronic pelvic discontinuity. According to the new classification, the likelihood of utilizing augment(s) increases with severity of bone loss. Future studies are required to validate this new chronic pelvic discontinuity classification


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 188 - 188
1 Jul 2002
Berry D
Full Access

Uncemented hemispherical sockets are the implant of choice for most acetabular revisions. Several studies at mid-term document good clinical results, and furthermore, the implants are both versatile and technically straightforward to insert. When bone loss is present, the indications for uncemented sockets are expanded by using jumbo uncemented cups or uncemented cups placed at a high hip center. The main limitation of uncemented hemispherical cups is the need to place them on sufficient host bone to provide initial mechanical stability with a high, long-term likelihood of biologic fixation. The amount of host bone needed to meet these criteria has been debated. One rule of thumb that has been used is 50% surface area contact of the shell with host bone. However, for large sockets with a large surface area, a smaller percentage of the surface in contact with host bone may prove acceptable, provided the shell has host bone support in key areas including a peripheral rim fit and support in the dome of the socket. When these criteria cannot be fulfilled, an alternative method of acetabular reconstruction must be considered. These alternatives include structural bone grafts, impaction grafting, and anti-protrusio cages. Anti-protrusio cages have the advantage of distributing forces over a large surface area of native bone, resisting migration, and being compatible with either bulk or particulate graft in massive acetabular deficiencies. These implants do not provide for biologic fixation and thus their use probably is best restricted to situations in which porous coated implants are not likely to work. Pelvic discontinuity is a specific form of acetabular bone deficiency in which there is a transverse fracture of the acetabulum. Usually this occurs in association with marked acetabular bone loss and represents a stress fracture through deficient bone. Preoperative findings suggestive of pelvic discontinuity include: medial/lateral offset of the superior pelvis relative to the inferior hemipelvis, malrotation of the inferior hemipelvis relative to superior hemipelvis, or visible fracture line demonstrating the pelvic discontinuity. Judet films and true lateral radiographs of the hip can be helpful to delineate the presence of pelvic discontinuity. The treatment principles for pelvic discontinuity include the following: 1.) gain stable fixation of the new acetabular implant. When the bone deficiency is relatively modest this may be possible with a hemispherical uncemented socket. Frequently, however, bone deficiency is massive and an anti-protrusio cage is necessary; 2.) restore pelvic continuity and stability. Usually this is possible with just a posterior column plate; 3.) bone graft large defects using particulate versus structural bone graft. In massive deficiencies structural bone grafts have the advantage of bridging the discontinuity and allowing healing of the native pelvis to the structural graft inferiorly and superiorly which may promote healing of the discontinuity. The results of treatment of pelvic discontinuity are dependent on the severity of bone loss and whether or not the pelvis had previous therapeutic radiation; milder bone loss is associated with better results; and more severe bone loss and previous therapeutic pelvic radiation with worse results. Surgery for pelvic discontinuity is complex and the most common complications include recurrent instability, infection, and sciatic neuropathy


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 70 - 70
1 Jun 2018
Gross A
Full Access

In our center the cup cage reconstruction is our most common technique where a cage is used, especially if there is a pelvic discontinuity. Cup Cage Construct – in this construct there must be enough bleeding host bone to stabilise the ultraporous cup which functions like a structural allograft supporting and eventually taking the stress off the cage. This construct is ideal for pelvic discontinuity with the ultraporous cup, i.e., bridging and to some degree distracting the discontinuity. If, however, the ultra-porous cup cannot be stabilised against some bleeding host bone, then a conventional stand-alone cage must be used. Acetabular bone loss and presence of pelvic discontinuity were assessed according to the Gross classification. Sixty-seven cup cage procedures with an average follow-up of 74 months (range, 24–135 months; SD, 34.3 months) were identified; 26 of 67 (39%) were Gross Type IV and 41 of 67 (61%) were Gross Type V (pelvic discontinuity). Failure was defined as revision surgery for any cause, including infection. The 5-year Kaplan-Meier survival rate with revision for any cause representing failure was 93% (95% confidence interval, 83.1–97.4), and the 10-year survival rate was 85% (95% CI, 67.2–93.8). The Merle d'Aubigné-Postel score improved significantly from a mean of 6 pre-operatively to 13 post-operatively (p < 0.001). Four cup-cage constructs had non-progressive radiological migration of the ischial flange and they remain stable


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 62 - 62
1 May 2014
Gross A
Full Access

Pelvic discontinuity with associated bone loss is a complex challenge acetabular revision surgery. Reconstruction by the use of ilio-ischial cages combined with trabecular metal acetabular components and morsellised bone (the component-cage technique) is a relatively new method of treatment. The trabecular cup provides a good environment for bone graft remodeling and eventual bone or fibrous ingrowth. The cage protects the trabecular metal cup until stabilisation occurs. The cage not only protects the cup but places the articulating center at the correct level. We reviewed a consecutive series of 32 cases of acetabular revision reconstructions with pelvic discontinuity who had been treated by the cup-cage technique. The mean follow-up was 38 months (24.0 to 68.0). Failure was defined as a migration of a component of >5mm. In 29 hips there was no clinical or radiological evidence of loosening at the last follow-up. The Harris hip scores improved significantly from 44.6 (sd 10.4) to 78.7 (sd 10.4) points (p<0.001). In three hips (11.5%) the construct migrated at one year after surgery. The complications included two cases of dislocations, one of infection and one of partial palsy of the peroneal nerve. Our findings indicated that the treatment of pelvic discontinuity by the component-cage construct is a reliable option


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 63 - 63
1 May 2013
Haidukewych G
Full Access

Pelvic discontinuity remains one of the most difficult reconstructive challenges during acetabular revision. Bony defects are extremely variable and remaining bone quality may be extremely poor. Careful pre-operative imaging with plain radiographs, oblique views, and CT scanning is recommended to improve understanding of the remaining bone stock. It is wise to have several options available intra-operatively including metal augments, jumbo cups, and cages. Various treatment options have been used with variable success. The principles of management include restoration of acetabular stability by “connecting” the ilium to the ischium, and by (hopefully) allowing some bony ingrowth into a porous surface to allow longer-term construct stability. Posterior column plates can be useful to stabilise the pelvis, and can supplement a trabecular metal uncemented acetabular component. Screws into the dome and into the ischium are used to span the discontinuity. More severe defects may require so-called “cup-cage” constructs or trabecular metal augmentation distraction techniques. The most severe defects typically necessitate custom triflange components. Triflange constructs allow broad based contact with remaining bone stock, and can span surprisingly large defects. Recent cost analyses have shown that custom triflange constructs are comparable to cup-cage-augment reconstructions. The results of these various solutions to manage pelvic discontinuity is extremely variable, however, it is fair to conclude that constructs that allow some bony ingrowth have demonstrated improved survivorship when compared to historical treatments such as bulk allografts protected by cages. The author prefers a posterior column plate and a trabecular metal cup for simple discontinuities, a cup-cage for larger defects, and a custom triflange for the most severe defects. Pre-operative imaging is critical to guide this decision-making, and careful attention to detail is important to obtain a stable, durable construct


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 8 - 8
1 Jan 2018
Eachempati K Malhotra R Guravareddy A Ashokkumar P Gowtam D Sheth N Suryanarayan P
Full Access

The advent of trabecular metal (TM) augments has revolutionized the management of severe bone defects during acetabular reconstruction. The purpose of this study was to evaluate patients undergoing revision total hip arthroplasty (THA) with the use of TM augments for reconstruction of Paprosky 3A, 3B defects and defects associated with pelvic discontinuity. A retrospective study was conducted of the cases performed at four centers between August 2007 and January 2015. Patients treated with TM augments for Paprosky 3A, 3B or chronic pelvic discontinuity were included in the study. All surgeries were performed through a posterior approach. A total of 57 patients (Male 34 (69%), Female 23(31%)), mean age 54 years (range, 28–94 years), with minimum follow up of one-year were included and evaluated using intention to treat analysis. There were 44 (77%) patients with a 3A defect, 11(19%) patients with a 3B defect (6 had an associated pelvic discontinuity), and 2 (3.5%) with a 2C defect and associated pelvic discontinuity. The mean follow-up was 37 months (range, 12–96 months). One (2%) patient died after 8 years of unrelated causes. Three (5.5%) patients had acetabular component loosening requiring revision; Two failures were (3.5%) due to aseptic loosening and one (2%) due to septic loosening. Fifty-four patients had a radiologically stable integration of the components at latest follow-up - survivorship was 94.7%. The results of this multi-center study demonstrate encouraging short and mid-term results for the use of TM augments in the management of Grade 3A and 3B defects, and defects associated with a chronic pelvic discontinuity


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 870 - 876
1 Jul 2009
Kosashvili Y Backstein D Safir O Lakstein D Gross AE

Pelvic discontinuity with associated bone loss is a complex challenge in acetabular revision surgery. Reconstruction using ilio-ischial cages combined with trabecular metal acetabular components and morsellised bone (the component-cage technique) is a relatively new method of treatment. We reviewed a consecutive series of 26 cases of acetabular revision reconstructions in 24 patients with pelvic discontinuity who had been treated by the component-cage technique. The mean follow-up was 44.6 months (24 to 68). Failure was defined as migration of a component of > 5 mm. In 23 hips (88.5%) there was no clinical or radiological evidence of loosening at the last follow-up. The mean Harris hip score improved significantly from 46.6 points (29.5 to 68.5) to 76.6 points (55.5 to 92.0) at two years (p < 0.001). In three hips (11.5%) the construct had migrated at one year after operation. The complications included two dislocations, one infection and one partial palsy of the peroneal nerve. Our findings indicate that treatment of pelvic discontinuity using the component-cage construct is a reliable option


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 10 - 10
1 Jan 2018
Sheth N Melnic C Brown N Sporer S Paprosky W
Full Access

The treatment of severe acetabular bone loss is challenging, especially in the setting of an associated chronic pelvic discontinuity. There are several available treatment options for chronic pelvic discontinuity, each of which has its own disadvantages. One of the major difficulties with this entity, regardless of the reconstructive technique chosen, is the inability to obtain reproducible healing of the discontinuity. We evaluated the use of acetabular distraction, a technique which achieves peripheral or lateral distraction and central or medial compression across the discontinuity. We recommend acetabular distraction to allow for implantation of a stable construct, achieve biologic fixation and increase the likelihood of discontinuity healing. In this multi-center trial, 32 patients that underwent acetabular revision for a chronic pelvic discontinuity using acetabular distraction were radiographically evaluated at a minimum of 25 months (range, 25 to 160 months). The study cohort was categorized according to the Paprosky acetabular bone loss classification: seven (22%) type IIC, five (16%) type IIIA, and 20 (62%) type IIIB defects. Fourteen (70%) of the 20 patients with a type IIIB acetabular bone loss pattern required use of augments for acetabular reconstruction. Of the 32 patients, 1 (3%) patient required a revision for aseptic loosening, 2 (6%) patients had evidence of radiographic loosening but were not revised, and 3 (9%) patients had migration of the acetabular component into a more stable position. Radiographically, 22 (69%) of the cohort demonstrated healing of the discontinuity. The Kaplan-Meier construct survivorship was 83.3% when using aseptic acetabular loosening as an end-point. During this study, the authors created a new pelvic discontinuity classification based on the type of reconstruction required. The classification mirrors the Paprosky acetabular bone loss classification. A Type I chronic pelvic discontinuity required jumbo cup reconstruction without augments. A type II discontinuity required the use of an augment for an extracavitary defect. A type III discontinuity required an augment for an intracavitary defect. Type III defects were further subdivided into type IIIA and IIIB discontinuity. Type IIIA discontinuities utilized an augment to reconstruct the anterosuperior and/or posteroinferior column defect for primary stability of the overall construct. Type IIIB discontinuities utilized augments to reconstruct the anterosuperior and/or posteroinferior column defect for primary stability as well as a posterosuperior augment for supplemental fixation. All augments were unitized to the cup with cement. Type IV defects were massive defects that required the use of two orange-slice augments, secured together with screws and placed centrally to restore the defect, and a cup implanted and unitized to the augments with cement. According to this new classification, the discontinuity reconstructions in our study were classified as follows: 12 (38%) type I, 8 (25%) type II, 6 (19%) type IIIA, 6 (19%) type IIIB, and 0 as type IV. Acetabular distraction technique demonstrates favorable radiographic outcomes with reproducible discontinuity healing in a majority of cases. This alternative technique allows for biologic fixation and intra-operative customization of the construct to be implanted based on the bone loss pattern present following component removal