Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 106 - 106
1 Sep 2012
Xie J Wang Y Yang Z Zhang Y
Full Access

Introduction. To introduce a new classification method and analyze related risk factor about lateral wall perforation associated with lower cervical pedicle screw and free-hand insertion technique. Methods. A Retrospective study was made to analyze 214 patients (1024 screws) with various cervical spine disorders, involved in pedicle screw instrumentation at C3-7 from July 2004 to July 2009. Researchers assessed the position of the screws in the pedicle by carefully probing intraoperatively and studying postoperative thin-slice computed tomography scan. Perforation of lateral wall was classified into two phases. Phase I refers to the burst of the pedicle by screw, which means that the length of screw threads penetrating the external cortex of pedicles on CT scan is 2 mm, whereas in Phase, the length is >2 mm. The Penetrated screws and related factors were analyzed though Backward Stepwise (Wald) Logistic regression. Results. During the follow-up, 2 screws were reported to be broken and 1 screw loosened. Of the screws inserted, total of 129 screws 12.60% have shown violated of lateral pedicle walls, included 101 screws (9.86%) causative of Phase I and 28 screws (2.73%) of Phase II. Two variance were deduced in the regression analysis, which concerned to ratio variance between inner and lateral walls, PRC 0.695, OR value = 2.003and angle difference variance between screws implanted and measurements preoperativePRC −1.542, OR value = 0.214). Conclusions. Free-hand lower cervical pedicle screw insertion in this series was comparatively safety. Phase I Penetration was believed to be safe of vertebral artery and Phase II faced to higher risk of artery damage. The main risk factor of lateral wall perforation was the ratio variance between inner and lateral wall, while the main protection factor was the angle difference variance between screws implanted and CT measurements


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 59 - 59
1 Sep 2012
Demura S Kawahara N Murakami H Fujimaki Y Kato S Okamoto Y Hayashi H Inoue K Tsuchiya H
Full Access

Introduction. Correction and arthrodesis for cervical kyphosis associated with atetoid cerebral palsy has been considered to be difficult because of their involuntary neck movements and severe deformity. The aim of this study is to evaluate the surgical outcome of midline T-saw laminoplasty and posterior arthrodesis using pedicle screws. Methods. 15 patients were retrospectively reviewed. There were 6 women and 9 men, with a mean age 52.9 years (range 31–71 years). Mean follow-up period was 43 months (range 24–84 months). For clinical evaluation, the Japanese Orthopaedic Association (JOA) score and Barthel index (BI) which shows independence in ADL were used. For radiographic evaluation, change of C2–C7 Cobb angle of sagittal alignment, adjacent segment instability after the surgery were evaluated. Results. The average JOA score improved significantly from 6.2 preoperatively to 10.5 postoperatively. The average BI improved from 44.2 before surgery to 72.5 after surgery. C2–C7 Cobb angle of sagittal alignment measured 12.3 degrees of kyphosis preoperatively and 1.2 degrees of lordosis postoperatively. Solid posterior bony fusion was achieved in all cases. There was two cases of adjacent segmental instability, which required additional surgery. Seven (5.6%) out of the 125 inserted screws showed more than 2mm deviation. However, there were no neurovascular complications during or after surgery in any cases, and all cases maintained strong internal fixation. Conclusion. Midline T-saw laminoplasty and posterior arthrodesis using pedicle screw is a favorable option for the patient with kyphotic deformity associated with atetoid cerebral palsy, as it preserves cervical alignment, and improve neurological status and ADL


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 395 - 395
1 Sep 2012
Sánchez Ruas JJ Burgos Flores J Aranda Romero F Del Olmo Hernández T De Blas G Barrios C Hevia E Regidor I Correa Gorospe C Ruíz Ibán M Díaz Heredia J López Mondéjar J Berrendero L
Full Access

Introduction. A new triggered electromyography test for detection of stimulus diffusion to intercostal muscles of the contralateral side during thoracic pedicle screw placement was evaluated. Experimental research was carried out in order to determine if, using this test, neural contact at different aspects of the spinal cord and nerve roots could be discriminated. Methods. Nine industrial pigs (60–75 kg) had 108 pedicle screws placed bilaterally in the thoracic spine (T8–T13). Neural structures were stimulated under direct vision at different anatomic locations from T9 to T12. Recording electrodes were placed over the right and left intercostal muscles. Increasing intensity of the stimulus was applied until muscle response was detected at the contralateral side (diffusion phenomenon). After this first experiment, the thoracic spine was instrumented. Screws were placed in the pedicle in two different positions, the anatomic intrapedicular location and with purposeful contact with the neural elements. Results. Response thresholds to direct stimulation of nerve root at different points were significantly lower than those obtained by stimulation of the dorsal aspect of the spinal cord (0.44±0.22 mA vs 1.38±0.71 mA). However, a 24-fold stimulation intensity (6.50±0.29 mA) was necessary to obtain diffusion of the EMG response to the opposite left side if the right nerve root was stimulated. Only a 2-fold increment (3.17±0.93 mA) was able to elicit diffusion of EMG responses to the contralateral side when stimulation was applied to the dorsal aspect of the spinal cord. Contralateral EMG responses after high increases of stimulation thresholds indicated nerve root contact. Diffusion phenomenon after low threshold increments reflected medullar contact. Electromyography recordings after triggered stimulation of the screws showed that only screws in contact with the spinal cord had significantly lower responses (2.72±1.48 mA). Conclusion. Stimulus-triggered EMG could only discriminate screws with violation of the medial pedicle wall if they were contact with neural tissues. Recording EMG-potentials at the contralateral paraspinal muscles (stimulus diffusion phenomenon) proved to be a reliable method to discriminate which of the neural structures was at risk


Lowest instrumented vertebra (LIV) selection is critical to preventing complications following posterior spinal arthrodesis (PSA) for thoracolumbar/lumbar adolescent idiopathic scoliosis (TL/L AIS), but evidence guiding LIV selection is limited. This study aimed to investigate the efficacy of PSA using novel unilateral convex segmental pedicle screw instrumentation (UCS) in correcting TL/L AIS, to identify radiographic parameters correlating with distal extension of PSA, and to develop a predictive equation for distal fusion extension using these parameters. We reviewed data (demographic, clinical, radiographic, and SRS-22 questionnaires) preoperatively to 2-years' follow-up for TL/L AIS patients treated by PSA using UCS between 2006 to 2011. 53 patients were included and divided into 2 groups: Group-1 (n=36) patients had PSA between Cobb-to-Cobb levels; Group-2 (n=17) patients required distal fusion extension. A mean curve correction of 80% was achieved. Mean postoperative LIV angle, TL/L apical vertebra translation (AVT), and trunk shift were lower than previous studies. Six preoperative radiographic parameters significantly differed between groups and correlated with distal fusion extension: thoracic curve size, thoracolumbar curve size, LIVA, AVT, lumbar flexibility index, and Cobb angle on lumbar convex bending. Regression analysis optimised an equation (incorporating the first five parameters) which is 81% accurate in predicting Cobb-to-Cobb fusion or distal extension. SRS-22 scores were similar between groups. We conclude that TL/L AIS is effectively treated by PSA using UCS, six radiographic parameters correlate with distal fusion extension, and a predictive equation incorporating these parameters reliably informs LIV selection and the need for fusion extension beyond the caudal Cobb level


Introduction. Short-segment posterior instrumentation for spine fractures is threatened by unacceptable failure rates. Two important design objectives of pedicle screws, bending and pullout strength, may conflict with each other. Hypothesis. Multiobjective optimization study with artificial neural network (ANN) algorithm and genetic algorithm (GA). Materials & Methods. Three-dimensional finite element (FE) methods were applied to investigate the optimal designs of pedicle screws with an outer diameter of 7 mm using a multiobjective approach for these two objectives. Based on the FE results on an L25 orthogonal array, two objective functions were developed by an ANN algorithm. Then, the trade-off solutions known as Pareto optima were explored by a GA. The optimal design was validated by mechanical tests. Results. The knee solutions of the Pareto fronts had simultaneous high bending and pullout strength ranging from 92 to 94 percent of their maxima. The corresponding range of the design parameters was 3.8 to 4.06 mm for inner diameter and 3.21 to 3.3 mm for pitch; 0 mm for beginning position of conical angle, 0.4 mm for proximal root radius, 5 degrees for proximal half angle, and 0.1 mm for thread width. The optimal design was well validated by mechanical tests, comparing with commercially available pedicle screws. Discussion & Conclusions. The optimal design of pedicle screws obtained could achieve an ideal with high mechanical performance in both bending and pullout tests


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 418 - 418
1 Sep 2012
Goost H Karius T Deborre C Kabir K Randau T Burger C Wirtz D Pflugmacher R
Full Access

Introduction. Pedicle screw pullout or loosening is increased in the osteoporotic spine. Recent studies showed a significant increase of pullout forces especially for PMMA-augmentation. With application of conventional viscosity PMMA the risk of cement extravasation is associated. This risk can be reduced by using radiofrequency-responsive, ultrahigh viscosity bone cement. Method. 11 fresh-frozen lumbar vertebral bodies (VB) from 5 cadavers were collected and freed from soft-tissue and ligaments. By DEXA scan (Siemens QDR 2000) 8 VB were identified as severely osteoporotic (BMD 0.8 g/cm3), 3 VB were above this level. Two screws (6×45 mm, WSI-Expertise Inject, Peter Brehm, Weisendorf, Germany) were placed in the pedicles. Through the right screw 3ml of radiofrequency-responsive bone cement (StabiliT® ER2 Bone Cement, DFine, Germany) were injected via hydraulic cement delivery system (StabiliT® Vertebral Augmentation System, DFine, Germany). As control group, left pedicle screws remained uncemented. After potting the whole VB in technical PMMA (Technovit 4004, Heraeus Kulzer, Germany) axial pullout test was performed by a material testing device (Zwick-Roell, Zmart-Pro, Ulm, Germany). Results. The mean BMD of all specimen was 0.771 g/cm3 (min./max. 0.615/1.116, SD ± 0.170). Due to the definition of osteoporosis 8 specimens had a BMD lower than 0.8 g/cm3 (mean 0.677, min./max. 0.615/0,730, SD ±0.045). The non-osteoporotic group consisted of 3 specimens with a mean BMD of 1.020 g/cm3 (min/max 0.928/1.116, SD ±0.094). Overall we observed an increase in the mean axial pullout strength of 284% when using cement augmentated screws (non-cemented 385 N vs. cemented 1029 N, p 0,001). In the osteoporotic group the mean pullout force of the non-cemented screws was 407 N vs. 1022 N for the cemented screws (p 0.001). Similarly the pullout force rose in the non-osteoporotic group from 325 N for the non-cemented screws to 1048 N for the cemented screws p 0,001). All surgical procedures could be performed without technical problems. Conclusion. This cadaver study demonstrates the efficacy and effectiveness of pedicle-screw augmentation with ultra-high viscosity cement. Pullout forces are significantly increased, especially in osteoporotic bone. No complications like clogged in cannulated pedicle-screws or extravasation of bone cement were observed. In daily clinical routine radiation exposure to operator during cement delivery is reduced due to remote-controlled, automated delivery of radiofrequency-responsive bone cement. Furthermore availability of longer time to work with the cement (up to 30 min) is achieved; hectically injection or multiple-cement-mixing is not necessary anymore. The WSI-Expertise cannulated pedicle screws can be inserted and also augmented in a minimal-invasive technique. The PMMA then is injected through an extension adapter. PMMA augmentation of pedicle screws is already well established in spine surgery. With the combination of radiofrequency-responsive, ultra-high viscosity bone cement and cannulated pedicle screws this established procedure could become more controlled and safer for both patient and physician


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_19 | Pages 8 - 8
1 Nov 2017
Annan J Murray A
Full Access

Simulation in surgical training has become a key component of surgical training curricula, mandated by the GMC, however commercial tools are often expensive. As training budgets become increasingly pressurised, low-cost innovative simulation tools become desirable. We present the results of a low-cost, high-fidelity simulator developed in-house for teaching fluoroscopic guidewire insertion. A guidewire is placed in a 3d-printed plastic bone using simulated fluoroscopy. Custom software enables two inexpensive web cameras and an infra-red led marker to function as an accurate computer navigation system. This enables high quality simulated fluoroscopic images to be generated from the original CT scan from which the bone model is derived and measured guidewire position. Data including time taken, number of simulated radiographs required and final measurements such as tip apex distance (TAD) are collected. The simulator was validated using a DHS model and integrated assessment tool. TAD improved from 16.8mm to 6.6mm (p=0.001, n=9) in inexperienced trainees, and time taken from 4:25s to 2m59s (p=0.011). A control group of experienced surgeons showed no improvement but better starting points in TAD, time taken and number of radiographs. We have also simulated cannulated hip screws, femoral nail entry point and SUFE, but the system has potential for simulating any procedure requiring fluoroscopic guidewire placement e.g. pedicle screws or pelvic fixation. The low cost and 3D-printable nature have enabled multiple copies to be built. The software is open source allowing replication by any interested party. The simulator has been incorporated successfully into a higher orthopaedic surgical training program


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 74 - 74
1 Sep 2012
Wang Y Xiao S Zhang Y Zhang X Wang Z Zheng G
Full Access

Study Design. Retrospective review. Objective. To report the technique and results of vertebral column decancellation (VCD) for the management of sharp angular spinal deformity. Summary of Background Data. The goal of management of sharp angular spinal deformity is to realign the spinal deformity and safely decompress the neurological elements. However, some shortcomings related to current osteotomy treatment for these deformities are still evident. Methods. From January 2004 to March 2007, 45 patients (27 males/18 females) with severe sharp angular spinal deformities at our institution underwent VCD. The diagnoses included 29 congenital kyphoscoliosis and 16 Pott's deformity. The operative technique included multilevel VCD, disc removal, osteoclasis of the concave cortex, compression of the convex cortex accompanied by posterior instrumentation with pedicle screws. Preoperative and postoperative radiographic evaluation was performed. Intraoperative, postoperative and general complications were noted. Results. For a kyphosis type deformity, an average of 2.2 vertebrae was decancellated (range, 2to 4 vertebrae). The mean preoperative kyphosis was +98.6° (range, 82° to 138°), and the meankyphosis in the immediate postoperative period was +16.4° (range, 4° to 30°) with an averagepostoperative correction of +82.2° (range, 61° to 124°). For a kyphoscoliosis type deformity, thecorrection rate was 64% in the coronal plane (from 83.4° to 30.0°) postoperatively and 32.5°(61% correction) at 2 years follow-up. In the sagittal plane, the average preoperative curve of88.5° corrected to 28.6° immediately after surgery and to 31.0° at 2 years follow-up. All patientshad solid fusion at latest follow-up. Complications were encountered in 8 patients (17.8%) andincluded transient neurological deficit and complete paralysis (n = 1). Conclusion. Single stage posterior vertebral column decancellation (VCD) is an effective option to manage severe sharp angular spinal deformities


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 287 - 287
1 Sep 2012
Bogie R Voss L Welting T Willems P Arts J Van Rhijn L
Full Access

INTRODUCTION. Surgical correction of spinal deformities in the growing child can be applied with or without fusion. Sublaminar wiring, first described by Luque, allows continuation of growth of the non-fused spine after correction of the deformity. Neurological complications and wire breakage are the main clinical problems during the introduction and removal of currently used sublaminar wires. In this pilot study a posterior hybrid construction with the use of a medical-grade UHMWPE (Dyneema Purity®) sublaminar wire was assessed in an ovine model. We hypothesized that such a hybrid construction can safely replace current titanium laminar wires, while providing sufficient stability of the non-fused spinal column with preservation of growth. MATERIALS AND METHODS. This study included 6 Tesselaar sheep, age 7±2months. Two pedicle screws (Legacy system, Medtronic) were placed at lumbar level. Four consecutive laminae were attached to two titanium bars (4.5 mm) using 3 mm diameter UHMWPE (Dyneema Purity®) on the left side and 5 mm diameter on the right side. The sublaminar wires were fixed with a double loop sliding knot and tightened with a tensioning device. As a control, in one animal titanium sublaminar wires (Atlas cable, Medtronic) were applied. After sacrifice the spine of the animals was harvested. Radiographs were taken and CT scans were performed. The vertebrae were dissected and placed in formaldehyde for macroscopic and histological evaluation. RESULTS. The animals were sacrificed after a (minimal) postoperative period of 15 weeks. One animal developed a wire fistula and one animal died the first postoperative day due to complications of the anesthesia. None of the 3 or 5 mm knots loosened and no neurological complications occurred. An average of 8.7 mm growth was seen over the segment operated on. Computed tomography confirmed the preserved stability. Even though no decortication was performed, variable bone bridges with fused levels were seen on CT. Macroscopic and histological analysis showed no inflammation at lamina and dura levels containing Dyneema Purity®, with the exception of the case with the fistula where it was observed locally. DISCUSSION. This pilot animal model study shows that the UHMWPE laminar wire made by Dyneema Purity® has good handling and tensioning properties and can provide sufficient stability in fusionless spinal instrumentation while allowing substantial growth. The examined model showed to be a feasible spinal study model, without occurrence of neurological problems. Reactive periostal bone formation with fusion levels led to some restrictions in this model. In the future it will be necessary to test the described construction in a large animal scoliosis model


The Bone & Joint Journal
Vol. 99-B, Issue 9 | Pages 1232 - 1236
1 Sep 2017
Dahill M McArthur J Roberts GL Acharya MR Ward AJ Chesser TJS

Aims

The anterior pelvic internal fixator is increasingly used for the treatment of unstable, or displaced, injuries of the anterior pelvic ring. The evidence for its use, however, is limited. The aim of this paper is to describe the indications for its use, how it is applied and its complications.

Patients and Methods

We reviewed the case notes and radiographs of 50 patients treated with an anterior pelvic internal fixator between April 2010 and December 2015 at a major trauma centre in the United Kingdom. The median follow-up time was 38 months (interquartile range 24 to 51).


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 696 - 702
1 May 2016
Theologis AA Burch S Pekmezci M

Aims

We compared the accuracy, operating time and radiation exposure of the introduction of iliosacral screws using O-arm/Stealth Navigation and standard fluoroscopy.

Materials and Methods

Iliosacral screws were introduced percutaneously into the first sacral body (S1) of ten human cadavers, four men and six women. The mean age was 77 years (58 to 85). Screws were introduced using a standard technique into the left side of S1 using C-Arm fluoroscopy and then into the right side using O-Arm/Stealth Navigation. The radiation was measured on the surgeon by dosimeters placed under a lead thyroid shield and apron, on a finger, a hat and on the cadavers.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 423 - 432
1 Jul 2017
van der Stok J Hartholt KA Schoenmakers DAL Arts JJC

Objectives

The aim of this systematic literature review was to assess the clinical level of evidence of commercially available demineralised bone matrix (DBM) products for their use in trauma and orthopaedic related surgery.

Methods

A total of 17 DBM products were used as search terms in two available databases: Embase and PubMed according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses statement. All articles that reported the clinical use of a DBM-product in trauma and orthopaedic related surgery were included.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 237 - 244
1 Feb 2011
Berber O Amis AA Day AC

The purpose of this study was to assess the stability of a developmental pelvic reconstruction system which extends the concept of triangular osteosynthesis with fixation anterior to the lumbosacral pivot point. An unstable Tile type-C fracture, associated with a sacral transforaminal fracture, was created in synthetic pelves. The new concept was compared with three other constructs, including bilateral iliosacral screws, a tension band plate and a combined plate with screws. The pubic symphysis was plated in all cases. The pelvic ring was loaded to simulate single-stance posture in a cyclical manner until failure, defined as a displacement of 2 mm or 2°. The screws were the weakest construct, failing with a load of 50 N after 400 cycles, with maximal translation in the craniocaudal axis of 12 mm. A tension band plate resisted greater load but failure occurred at 100 N, with maximal rotational displacement around the mediolateral axis of 2.3°.

The combination of a plate and screws led to an improvement in stability at the 100 N load level, but rotational failure still occurred around the mediolateral axis. The pelvic reconstruction system was the most stable construct, with a maximal displacement of 2.1° of rotation around the mediolateral axis at a load of 500 N.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 91 - 96
1 Jan 2009
Labbe J Peres O Leclair O Goulon R Scemama P Jourdel F

We have reviewed our experience in managing 11 patients who sustained an indirect sternal fracture in combination with an upper thoracic spinal injury between 2003 and 2006. These fractures have previously been described as ‘associated’ fractures, but since the upper thorax is an anatomical entity composed of the upper thoracic spine, ribs and sternum joined together, we feel that the term ‘fractures of the upper transthoracic cage’ is a better description. These injuries are a challenge because they are unusual and easily overlooked. They require a systematic clinical and radiological examination to identify both lesions. This high-energy trauma gives severe devastating concomitant injuries and CT with contrast and reconstruction is essential after resuscitation to confirm the presence of all the lesions. The injury level occurs principally at T4–T5 and at the manubriosternal joint. These unstable fractures need early posterior stabilisation and fusion or, if treated conservatively, a very close follow-up.