Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 40 - 40
1 Oct 2012
McCoy B Yaffe M Stulberg S
Full Access

Custom instrumentation in TKA utilises pre-operative imaging to generate a customised guide for cutting block placement. The surgeon is able to modify the plan using three-dimensional software. Although this technology is increasingly gaining acceptance, there is a paucity of clinical data supporting it.

One hundred and eleven patients underwent primary TKA using the Zimmer Patient-Specific Instrumentation (PSI) system, in 28 of the cases surgical navigation was used to validate the PSI-generated cuts. Alignment measurements included long-leg alignment and biplanar distal femoral and proximal tibial cuts. Further measurements evaluated femoral implant placement in the AP plane, femoral component rotation, measured bone resection and implant sizing accuracy.

The mean final limb alignment as recorded by computer-assisted surgical (CAS) tools was 0.3° of varus. Only two limbs were malaligned by greater than 3°. The femoral component had a mean alignment of 0.3° of valgus and 4.5° of flexion (PSI plan 3° flexion). The predicted femoral size was accurate in 89% of cases and the anterior femoral cut was congruent with the anterior cortex in 92% of cases. The PSI-directed femoral component rotation was consistent with the surgeon's perceived rotation in 95% of cases. The posterior condylar bone resection had a mean difference of < 1mm from the predicted resection.

The tibial component had a mean alignment of 0.5° of varus and 8.5° of posterior slope (PSI plan 7° posterior slope). The only statistically significant deviation in alignment was the increased tibial slope (p = 0.046). The tibial component size was accurately predicted in 66% of cases.

Custom instrumentation in total knee arthroplasty accurately achieved implant and limb alignment in our study. The plan was more reproducible on the femoral slide. The overestimation of tibial slope and tibial sizing incongruity were related to some of the reference points for the software. A potential benefit of this technology is improved mid-flexion stability by accurately determining femoral component size, placement, and rotation. Further studies will need to be conducted to determine the efficiency and cost-effectiveness of this technology.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1043 - 1049
1 Aug 2016
Huijbregts HJTAM Khan RJK Fick DP Hall MJ Punwar SA Sorensen E Reid MJ Vedove SD Haebich S

Aims

We conducted a randomised controlled trial to assess the accuracy of positioning and alignment of the components in total knee arthroplasty (TKA), comparing those undertaken using standard intramedullary cutting jigs and those with patient-specific instruments (PSI).

Patients and Methods

There were 64 TKAs in the standard group and 69 in the PSI group.

The post-operative hip-knee-ankle (HKA) angle and positioning was investigated using CT scans. Deviation of > 3° from the planned position was regarded as an outlier. The operating time, Oxford Knee Scores (OKS) and Short Form-12 (SF-12) scores were recorded.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 37 - 37
1 Sep 2012
Kinzel V Scholes C Giuffrè B Coolican M Parker D
Full Access

Patient-matched instrumentation is advocated as the latest development in arthroplasty surgery. Custom-made cutting blocks created from preoperative MRI scans have been proposed to achieve perfect alignment of the lower limb in total knee arthroplasty (TKA). The aim of this study was to determine the efficacy of patient-specific cutting blocks by comparing them to navigation, the current gold standard. 25 TKA patients were recruited to undergo their surgery guided by Smith & Nephew Visionaire Patient-Matched cutting blocks. Continuous computer navigation was used during the surgery to evaluate the accuracy of the cutting blocks. The blocks were assessed for the fit to the articular surface, as well as alignment in the coronal and sagittal planes, sizing, and resection depth. Actual postoperative alignment was then assessed by detailed CT scans following the Perth protocol, comparing the results with intraoperative measurements. All patient-matched cutting blocks were a good fit intra-operatively. Significant differences (p<0.05) in the resection depths of the distal femur and tibial plateau were observed between the cutting blocks and computer navigation for the medial compartment. Cutting block alignment of the femur and tibia in the coronal and sagittal planes also differed significantly (p<0.05) to navigation measurements. In addition, intraoperative assessment of sagittal femoral alignment differed to planned alignment by an average of 4.0 degrees (+/−2.3). This study suggests the use of patient-matched cutting blocks is not accurate, particularly in the guidance of the sagittal alignment in total knee arthroplasty. Despite this technique creating well fitting cutting blocks, intraoperative monitoring, validated by postoperative CT scans, revealed an unacceptable degree of potential limb mal-alignment, resulting in increased outliers particularly when compared with standard computer navigation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 299 - 299
1 Mar 2013
Parker D Lustig S Scholes C Kinzel V Oussedik S Coolican M
Full Access

Purpose. Patient-matched instrumentation is advocated as the latest development in arthroplasty surgery. Custom-made cutting blocks created from preoperative MRI scans have been proposed to achieve perfect alignment of the lower limb in total knee arthroplasty (TKA). The aim of this study was to determine the efficacy of patient-specific cutting blocks by comparing them to navigation, the current gold standard. Methods. 60 TKA patients were recruited to undergo their surgery guided by Smith & Nephew Visionaire Patient-Matched cutting blocks. Continuous computer navigation was used during the surgery to evaluate the accuracy of the cutting blocks. The blocks were assessed for the fit to the articular surface, as well as alignment in the coronal, sagittal and rotational planes, sizing, and resection depth. Results. All patient-matched cutting blocks were a good fit intra-operatively. Significant differences (p<0.05) in the resection depths of the distal femur and tibial plateau were observed between the cutting blocks and computer navigation for the medial compartment. Cutting block alignment of the femur and tibia in the coronal and sagittal planes also differed significantly (p<0.05) to navigation measurements. The PSCB would have placed 79.3% of the sample within +3° of neutral in the coronal plane, while the rotational and sagittal alignment results within +3° were 77.2% and 54.5% respectively. In addition, intraoperative assessment of sagittal femoral alignment differed to planned alignment by an average of 4.0 degrees (+/−2.3). Conclusion. This study suggests the use of patient-matched cutting blocks is not accurate, particularly in the guidance of the sagittal alignment in total knee arthroplasty. Despite this technique creating well fitting cutting blocks, intraoperative monitoring revealed an unacceptable degree of potential limb mal-alignment, resulting in increased outliers particularly when compared with standard computer navigation. Caution is recommended before PSCB are used routinely without objective verification of alignment


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 76 - 76
1 May 2016
Kaneyama R Higashi H Shiratsuchi H Oinuma K Miura Y Tamaki T
Full Access

Introduction. The conventional bone resection technique in TKA is recognized as less accurate than computer-assisted surgery (CAS) and patient-matched instrumentation (PMI). However, these systems are not available to all surgeons performing TKAs. Furthermore, it was recently reported that PMI accuracy is not always better than that of the conventional bone resection technique. As such, most surgeons use the conventional technique for distal femur and proximal tibia resection, and efforts to improve bone resection accuracy with conventional technique are necessary. Here, we examined intraoperative X-rays after bone resection of the distal femur and proximal tibia with conventional bone resection technique. If the cutting angle was not good and the difference from preoperative planning was over 3º, we considered re-cutting the bone to correct the angle. Methods. We investigated 117 knees in this study. The cutting angle of the distal femur was preoperatively determined by whole-length femoral X-ray. The conventional technique with an intramedullary guide system was used for distal femoral perpendicular resection to the mechanical axis. Proximal tibial cutting was performed perpendicular to the tibial shaft with an extramedullary guide system. The cutting angles of the distal femur and proximal tibia were estimated by intraoperative X-ray with the lower limb in extension position. When the cutting angle was over 3º different from the preoperatively planned angle, re-cutting of distal femur or proximal tibia was considered. Results. On the intraoperative X-ray, the average femoral cutting angle difference from preoperative planning was 0.1º (SD: 2.6º) and the average tibial cutting angle was 1.1º varus (SD: 1.8º). Over 3º and 5º outlier cases were observed in 15 knees and 5 knees on the femoral side and in 15 knees and 3 knees on the tibial side respectively. Cutting angle correction was performed in 18 knees on the distal femur and 17 knees on the proximal tibia. On the postoperative X-ray, over 3º and 5º outliers were observed in 16 knees and only 1 knee on the femoral side and in 11 knees and no cases on the tibial side respectively. Cases with outliers over 3º were not different between intra- and postoperative estimation; however, the number of over 5º outliers was decreased from 8 knees (6.8%) to 1 knee (0.9%) including both the femoral and tibial sides (p < 0.05, Chi-square test). Discussion. Precise bone cutting technique is important for TKA; however, the bone resection accuracy of the conventional technique is far from satisfactory. CAS, PMI, and portable navigation have been developed for precise bone resection in TKA. However, these new technologies involve additional cost and have not been clearly shown to improve accuracy. Most surgeons currently use the conventional technique, and we think it is possible to improve bone resection accuracy with the conventional technique in TKA. Our method is simple and requires just one intraoperative X-ray. This is cost-effective and can be performed by most surgeons. Our results indicate that a single intraoperative X-ray can reduce the number of excessive bone resection angle outliers in TKA