Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Open
Vol. 4, Issue 8 | Pages 612 - 620
21 Aug 2023
Martin J Johnson NA Shepherd J Dias J

Aims. There is ambiguity surrounding the degree of scaphoid union required to safely allow mobilization following scaphoid waist fracture. Premature mobilization could lead to refracture, but late mobilization may cause stiffness and delay return to normal function. This study aims to explore the risk of refracture at different stages of scaphoid waist fracture union in three common fracture patterns, using a novel finite element method. Methods. The most common anatomical variant of the scaphoid was modelled from a CT scan of a healthy hand and wrist using 3D Slicer freeware. This model was uploaded into COMSOL Multiphysics software to enable the application of physiological enhancements. Three common waist fracture patterns were produced following the Russe classification. Each fracture had differing stages of healing, ranging from 10% to 90% partial union, with increments of 10% union assessed. A physiological force of 100 N acting on the distal pole was applied, with the risk of refracture assessed using the Von Mises stress. Results. Overall, 90% to 30% fracture unions demonstrated a small, gradual increase in the Von Mises stress of all fracture patterns (16.0 MPa to 240.5 MPa). All fracture patterns showed a greater increase in Von Mises stress from 30% to 10% partial union (680.8 MPa to 6,288.6 MPa). Conclusion. Previous studies have suggested 25%, 50%, and 75% partial union as sufficient for resuming hand and wrist mobilization. This study shows that 30% union is sufficient to return to normal hand and wrist function in all three fracture patterns. Both 50% and 75% union are unnecessary and increase the risk of post-fracture stiffness. This study has also demonstrated the feasibility of finite element analysis (FEA) in scaphoid waist fracture research. FEA is a sustainable method which does not require the use of finite scaphoid cadavers, hence increasing accessibility into future scaphoid waist fracture-related research. Cite this article: Bone Jt Open 2023;4(8):612–620


The Bone & Joint Journal
Vol. 96-B, Issue 8 | Pages 1070 - 1076
1 Aug 2014
Hannemann PFW van Wezenbeek MR Kolkman KA Twiss ELL Berghmans CHJ Dirven PAMGM Brink PRG Poeze M

We hypothesised that the use of pulsed electromagnetic field (PEMF) bone growth stimulation in acute scaphoid fractures would significantly shorten the time to union and reduce the number of nonunions in a randomised, double-blind, placebo-controlled multicentre trial. A total of 102 patients (78 male, 24 female; mean age 35 years (18 to 77)) from five different medical centres with a unilateral undisplaced acute scaphoid fracture were randomly allocated to PEMF (n = 51) or placebo (n = 51) and assessed with regard to functional and radiological outcomes (multiplanar reconstructed CT scans) at 6, 9, 12, 24 and 52 weeks. The overall time to clinical and radiological healing did not differ significantly between the active PEMF group and the placebo group. We concluded that the addition of PEMF bone growth stimulation to the conservative treatment of acute scaphoid fractures does not accelerate bone healing.

Cite this article: Bone Joint J 2014; 96-B:1070–6.