Advertisement for orthosearch.org.uk
Results 1 - 20 of 21
Results per page:
Bone & Joint Research
Vol. 6, Issue 1 | Pages 14 - 21
1 Jan 2017
Osagie-Clouard L Sanghani A Coathup M Briggs T Bostrom M Blunn G

Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect. Cite this article: L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14–21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 131 - 139
1 Jan 2011
Daugaard H Elmengaard B Andreassen TT Baas J Bechtold JE Soballe K

Impaction allograft is an established method of securing initial stability of an implant in arthroplasty. Subsequent bone integration can be prolonged, and the volume of allograft may not be maintained. Intermittent administration of parathyroid hormone has an anabolic effect on bone and may therefore improve integration of an implant. Using a canine implant model we tested the hypothesis that administration of parathyroid hormone may improve osseointegration of implants surrounded by bone graft. In 20 dogs a cylindrical porous-coated titanium alloy implant was inserted into normal cancellous bone in the proximal humerus and surrounded by a circumferential gap of 2.5 mm. Morsellised allograft was impacted around the implant. Half of the animals were given daily injections of human parathyroid hormone (1–34) 5 μg/kg for four weeks and half received control injections. The two groups were compared by mechanical testing and histomorphometry. We observed a significant increase in new bone formation within the bone graft in the parathyroid hormone group. There were no significant differences in the volume of allograft, bone-implant contact or in the mechanical parameters. These findings suggest that parathyroid hormone improves new bone formation in impacted morsellised allograft around an implant and retains the graft volume without significant resorption. Fixation of the implant was neither improved nor compromised at the final follow-up of four weeks


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 400 - 404
1 Mar 2008
Johansson HR Skripitz R Aspenberg P

We have examined the deterioration of implant fixation after withdrawal of parathyroid hormone (PTH) in rats. First, the pull-out force for stainless-steel screws in the proximal tibia was measured at different times after withdrawal. The stimulatory effect of PTH on fixation was lost after 16 days. We then studied whether bisphosphonates could block this withdrawal effect. Mechanical and histomorphometric measurements were conducted for five weeks after implantation. Subcutaneous injections were given daily. Specimens treated with either PTH or saline during the first two weeks showed no difference in the mechanical or histological results (pull-out force 76 N vs 81 N; bone volume density 19% vs 20%). Treatment with PTH for two weeks followed by pamidronate almost doubled the pull-out force (152 N; p < 0.001) and the bone volume density (37%; ANOVA, p < 0.001). Pamidronate alone did not have this effect (89 N and 25%, respectively). Thus, the deterioration can be blocked by bisphosphonates. The clinical implications are discussed


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 40 - 40
1 Dec 2021
Cheong VS Roberts B Kadirkamanathan V Dall'Ara E
Full Access

Abstract. Objectives. Current therapies for osteoporosis are limited to generalised antiresorptive or anabolic interventions, which do not target specific regions to improve skeletal health. Moreover, the adaptive changes of separate and combined pharmacological and biomechanical treatments in the ovariectomised (OVX) mouse tibia has not been studied yet. Therefore, this study combines micro- computed tomography (micro-CT) imaging and computational modelling to evaluate the efficacies of treatments in reducing bone loss. Methodology. In vivo micro-CT (10.4µm/voxel) images of the right tibiae of N=18 female OVX C57BL/6 mice were acquired at weeks 14, 16, 18, 20 and 22 of age for 3 groups: mechanical loading (ML), parathyroid hormone (PTH) or combined therapies (PTHML). All mice received either injection of PTH (100μg/kg/day, 5days/week) or vehicle from week 18. The right tibiae were mechanically loaded in vivo at week 19 and 21 with a 12N peak load, 40 cycles/day and 3 days/week. Bone adaptation was quantified through spatial changes in bone mineral density (BMD) and strain distribution was obtained from micro-CT-based finite element models. Results. Densitometric parameters improved for all treatment between week 18–20 (10–21%), with the strongest benefits due to loading in the proximal regions (16–35%). At week 22, PTHML treatment induced 23–76% higher bone apposition in the proximal tibia than either monotherapy. Compared to the OVX control, all treatments reduced periosteal resorption at weeks 18–20 and 20–22 (20–87%). However, resorption in weeks 20–22 were 29–55% higher than weeks 18–20, increasing the strain in the proximal tibia. Synergistic effects of PTH and ML were observed on the periosteal surface of proximal tibia, but additive effects were seen predominately on the distal and lateral tibia. Conclusions. ML had a more dominant effect in improving bone health. PTH enhances bone's osteogenic response to ML additively and synergistically in a site- and time-dependent manner


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 437 - 440
1 Apr 2001
Skripitz R Aspenberg P

The intermittent administration of parathyroid hormone (PTH) increases the formation of bone by stimulating osteoblastic activity. Our study evaluates the possibility that intermittent treatment with PTH (1-34) may also enhance the implant-bone fixation of stainless-steel screws. Twenty-eight rats received one screw in either one (n = 8) or in both (n = 20) proximal tibiae. We administered either PTH (1-34) in a dosage of 60 μg/kg/day (n = 14) or vehicle (n = 14) over a period of four weeks. At the end of this time, the degree of fixation was assessed by measuring the removal torque on one screw in each rat (n = 28) and the pull-out strength on the contralateral screw (n = 20). PTH increased the mean removal torque from 1.1 to 3.5 Ncm (p = 0.001) and the mean pull-out strength from 66 to 145 N (p = 0.002). No significant differences in body-weight or ash weight of the femora were seen. Histological examination showed that both groups had areas of soft tissue at the implant-bone interface, but these appeared less in the PTH group. These results indicate that intermittent treatment with PTH may enhance the early fixation of orthopaedic implants


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 1 | Pages 138 - 141
1 Jan 2000
Skripitz R Andreassen TT Aspenberg P

Intermittent treatment with parathyroid hormone (PTH) has an anabolic effect on both intact cancellous and cortical bone. Very little is known about the effect of the administration of PTH on the healing of fractures or the incorporation of orthopaedic implants. We have investigated the spontaneous ingrowth of callus and the formation of bone in a titanium chamber implanted at the medioproximal aspect of the tibial metaphysis of the rat. Four groups of ten male rats weighing approximately 350 g were injected with human PTH (1-34) in a dosage of 0, 15, 60 or 240 μg/kg/day, respectively, for 42 days from the day of implantation of the chamber. During the observation period the chamber became only partly filled with callus and bone and no difference in ingrowth distance into the chamber was found between the groups. The cancellous density was increased by 90%, 132% and 173% in the groups given PTH in a dosage of 15, 60 or 240 μg/kg/day, respectively. There was a linear correlation between bone density and the log PTH doses (r. 2. = 0.6). Our findings suggest that treatment with PTH may have a potential for enhancement of the incorporation of orthopaedic implants as well as a beneficial effect on the healing of fractures when it is given in low dosages


Bone & Joint Research
Vol. 6, Issue 7 | Pages 452 - 463
1 Jul 2017
Wang G Sui L Gai P Li G Qi X Jiang X

Objectives. Osteoporosis has become an increasing concern for older people as it may potentially lead to osteoporotic fractures. This study is designed to assess the efficacy and safety of ten therapies for post-menopausal women using network meta-analysis. Methods. We conducted a systematic search in several databases, including PubMed and Embase. A random-effects model was employed and results were assessed by the odds ratio (OR) and corresponding 95% confidence intervals (CI). Furthermore, with respect to each outcome, each intervention was ranked according to the surface under the cumulative ranking curve (SUCRA) value. Results. With respect to preventing new vertebral fractures (NVF), all ten drugs outperformed placebo, and etidronate proved to be the most effective treatment (OR 0.24, 95% CI 0.14 to 0.39). In addition, zoledronic acid and parathyroid hormone ranked higher compared with the other drugs. With respect to preventing clinical vertebral fractures (CVF), zoledronic acid proved to be the most effective drug (OR = 0.25, 95% CI 0.08 to 0.92), with denosumab as a desirable second option (OR = 0.48, 95% CI 0.22 to 0.96), when both were compared with placebo. As for adverse events (AE) and severe adverse events (SAE), no significant difference was observed. According to SUCRA, etidronate ranked first in preventing CVF; parathyroid hormone and zoledronic acid ranked highly in preventing NVF and CVF. Raloxifene was safe with a high rank in preventing AEs and SAEs though performed unsatisfactorily in efficacy. Conclusions. This study suggests that, taking efficacy and safety into account, parathyroid hormone and zoledronic acid had the highest probability of satisfactory performance in preventing osteoporotic fractures. Cite this article: G. Wang, L. Sui, P. Gai, G. Li, X. Qi, X. Jiang. The efficacy and safety of vertebral fracture prevention therapies in post-menopausal osteoporosis treatment: Which therapies work best? a network meta-analysis. Bone Joint Res 2017;6:452–463. DOI: 10.1302/2046-3758.67.BJR-2016-0292.R1


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 29 - 29
4 Apr 2023
Bolam S Konar S Zhu M Workman J Lim K Woodfield T Monk P Coleman B Cornish J Munro J Musson D
Full Access

Re-rupture rates after rotator cuff repair remain high because of inadequate biological healing at the tendon-bone interface. Single-growth factor therapies to augment healing at the enthesis have so far yielded inconsistent results. An emerging approach is to combine multiple growth factors over a spatiotemporal distribution that mimics normal healing. We propose a novel combination treatment of insulin-like growth factor 1 (IGF-1), transforming growth factor β1 (TGF-β1) and parathyroid hormone (PTH) incorporated into a controlled-release tyraminated poly-vinyl-alcohol hydrogel to improve healing after rotator cuff repair. We aimed to evaluate this growth factor treatment in a rat chronic rotator cuff tear model. A total of 30 male Sprague-Dawley rats underwent unilateral supraspinatus tenotomy. Delayed rotator cuff repairs were then performed after 3 weeks, to allow tendon degeneration that resembles the human clinical scenario. Animals were randomly assigned to: [1] a control group with repair alone; or [2] a treatment group in which the hydrogel was applied at the repair site. All animals were euthanized 12 weeks after rotator cuff surgery and the explanted shoulders were analyzed for biomechanical strength and histological quality of healing at the repair site. In the treatment group had significantly higher stress at failure (73% improvement, P=0.003) and Young's modulus (56% improvement, P=0.028) compared to the control group. Histological assessment revealed improved healing with significantly higher overall histological scores (10.1 of 15 vs 6.55 of 15, P=0.032), and lower inflammation and vascularity. This novel combination growth factor treatment improved the quality of healing and strength of the repaired enthesis in a chronic rotator cuff tear model. Further optimization and tailoring of the growth factors hydrogel is required prior to consideration for clinical use in the treatment of rotator cuff tears. This novel treatment approach holds promise for improving biological healing of this clinically challenging problem


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 72 - 72
1 Nov 2018
Murphy CM
Full Access

Healthy bone metabolism is a tightly coupled dynamic process that relies on a balance between bone resorption (catabolism) by osteoclasts and bone formation (anabolism) by osteoblasts. Traditionally, tissue-engineering approaches for non-union fracture repair employ local anabolic therapeutic delivery strategies that target mesenchymal stem cells (MSCs) and osteoblasts to induce bone formation, however, the challenge of healing non-union defects depends on the cause of defect e.g. trauma or disease, and targeting bone formation alone is often not sufficient. Our research focuses on utilising both anabolic therapeutics, including recombinant human bone morphogenic protein (rhBMP) −2 and parathyroid hormone (PTH). (1–34). , and anti-catabolic bisphosphonates (BPs) to target bone metabolism. A major challenge with harnessing a combined dosing regimen is controlling the release of the individual therapeutics to target cells. We have developed a number of polymer-ceramic based biomaterial delivery systems, including injectable and implantable scaffolds, for the controlled release of rhBMP-2 and the BP zoledronic acid (ZA) and demonstrated their efficacy in vivo. A dual therapeutic load provided a synergistic enhancement of bone regeneration, demonstrating significantly increased bone formation and remodelling compared to anabolic therapies alone. Utilising hydroxyapatite as the ceramic phase in our scaffolds further increased bone formation, demonstrating the polymer-ceramic scaffolds to be osteoconductive in the absence of therapeutics. In addition, we have demonstrated the manipulation of bone metabolism through a specific dosing regimen of PTH. (1–34). , a therapeutic traditionally used as an anabolic, to induce bone remodelling and drive healing in BP loaded fractures. Our research to date has shown that optimising the delivery and regimen of anabolic and anti-catabolic therapeutics to control bone metabolism, augments the bone regenerative potential of these therapeutics in orthopaedic applications


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 50 - 50
1 Oct 2016
Clouard L Sanghani-Kerai A Coathup M Briggs T Blunn G
Full Access

Intermittent parathyroid hormone (iPTH 1–34) increases bone formation via modelling and remodelling mechanisms and as such is used to treat osteoporosis. The actions of iPTH on mesenchymal stem cell (MSCs) may underpin a further treatment option. We isolated bone marrow derived MSCs from young (WT) and ovarectomized senile (OVX) rats, investigating the effect of intermittent and continuous PTH administration on migration to SDF-1, proliferation and osteogenic differentiation. MSCs were harvested from the femora of 6–10week old WT rats and 10–13month old OVX rats. Cells were cultured with 25,50 and 100nmMol of PTH 1–34 added to osteogenic media either continuously or intermittently for 6hours in every 72hour cycle. ALP and Alizarin Red assessed osteogenic differentiation, and Alamar Blue- proliferation. Cells were seeded in a Boyden chamber to quantify SDF-1 migration. A student t-test was used to analyse results, and a p value<0.05 considered significant. ALP and Alizarin Red were significantly increased for WT and OVX groups at 50nmMol of iPTH. Continuous administration at all concentrations reduced calcium phosphate deposition by day 21 in all groups. In comparison to cells cultured in osteogenic media, 50nmMol of iPTH led to significantly higher ALP and Alizarin Red measurements up to days 10 and 7 respectively (figure 1). There was no change in proliferation between the groups, and PTH had no effect (figure 2.). WT MSCs not only had improved osteogenic differentiation, but also showed increased migration to SDF-1 in comparison to OVX groups. iPTH led to further increases in migration of both OVX and WT cells. iPTH increases the osteogenic differentiation and migration of MSCs from both young and ovarectomised rats, though this effect is not dose dependent. Ultimately, the role of iPTH on MSCs may lead to improved bone formation and cell homing capacity-particularly in the context of osteoporosis


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 28 - 28
1 Jan 2017
Osagie L Sanghani-Kerai A Coathup M Briggs T Blunn G
Full Access

Osteoporosis is characterised by an uncoupling of bone formation and resorption resulting in a net reduction in bone density. Stem cells derived from bone marrow in osteoporotic patients typically contain more adipocytes,. Intermittent Parathyroid hormone (iPTH), has been shown to cause the preferential differentiation of mesenchymal stem cells (MSCs) to osteoblasts. We isolated rat bone marrow derived MSCs, investigating the effect of iPTH on adipocyte differentiation. MSCs were harvested from the femora of 6–10week oldWT rats and cultured to induce adipogenesis for 21 days. Subsequently, cells were continually cultured in adipogenic media, osteogenic media or in osteogenic media supplemented with PTH 1–34 either continuously or intermittently for 6hours in every 72hour cycle. ALP and Alizarin Red assessed osteogenic differentiation, and Oil Red O used to assess intracellular microdroplet formation. A student t-test was used to analyse results, and a p value<0.05 considered significant. Quantitatively measurements of Alizarin Red staining significantly increased in all adipocytes grown in osteogenic media compared to the cells continually cultured in adipogenic media. Calcium phosphate deposition continued to increase significantly in these groups up to day 14. At day 14, Alizarin Red staining from cells cultured in iPTH were significantly higher than osteogenic media alone. ALP expression was significantly higher for cells cultured in osteogenic media and iPTH compared to adipogenic media at days 3–14. Expression peaked at day 7, at this timepoint cells cultured in iPTH expressed significantly more ALP than other groups. Oil Red O measurements were significantly reduced from days 7–14 for all osteogenic groups, this significance was greatest for the iPTH group at day 7. iPTH increased the transdifferentiation of adipocytes derived from MSCs into osteoblasts, this effect was most significant after 7 days. Ultimately, the role of iPTH on adipocytes may lead to improved bone formation with many orthopaedic applications


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 2 - 2
1 Oct 2016
Clouard L Sanghani-Kerai A Coathup M Briggs T Blunn G
Full Access

Osteoporosis is characterised by an uncoupling of bone formation and resorption resulting in net resorption. Stem cells derived from bone marrow in osteoporotic patients typically contain more adipocytes. Intermittent Parathyroid hormone (iPTH), has been shown to cause the preferential differentiation of mesenchymal stem cells (MSCs) to osteoblasts. We isolated rat bone marrow derived MSCs, investigating the effect of iPTH on adipocyte differentiation. MSCs were harvested from the femora of 6–10week oldWT rats and cultured to induce adipogenesis for 21 days. Subsequently, cells were continually cultured in adipogenic media, osteogenic media or in osteogenic media supplemented with PTH 1–34 either continuously or intermittently for 6hours in every 72hour cycle. ALP and Alizarin Red assessed osteogenic differentiation, and Oil Red O used to assess intracellular microdroplet formation. A student t-test was used to analyse results, and a p value<0.05 considered significant. Quantitatively measurements of Alizarin Red staining significantly increased in all adipocytes grown in osteogenic media compared to the cells continually cultured in adipogenic media. Calcium phosphate deposition continued to increase significantly in these groups up to day 14. At day 14, Alizarin Red staining from cells cultured in iPTH were significantly higher than osteogenic media alone. ALP expression was significantly higher for cells cultured in osteogenic media and iPTH compared to adipogenic media at days 3–14. Expression peaked at day 7, at this timepoint cells cultured in iPTH expressed significantly more ALP than other groups (Figure 2). Oil Red O measurements were significantly reduced from days 7–14 for all osteogenic groups, this significance was greatest for the iPTH group at day 7. iPTH increased the transdifferentiation of adipocytes derived from MSCs into osteoblasts, this effect was most significant after 7 days. Ultimately, the role of iPTH on adipocytes may lead to improved bone formation with many orthopaedic applications


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 2 - 2
1 Mar 2013
Acquaah F Abel R Ahmed F Brown K
Full Access

Ontogeny of long bone cross-sectional geometry has lasting effects on adult bone structure. Growth and development of bone is influenced by biological and mechanical factors but the importance of these factors is poorly understood. A study of prenatal, neonatal and infant development in a bone with simple loading patterns, may improve our understanding. Five vertebral columns aged between 6 months prenatal to 2.5 years postnatal, were analysed to quantify the changes in trabecular architecture before and after birth. Several measures were collected including trabecular: thickness, bone volume fraction, connectivity density, number, structure model index and anisotropy. The findings show that in the first year after birth there is a substantial loss of bone volume via decreasing trabecular thickness and number, which tends to increase after 1.2 years. This sequential pattern of development may be a functional response to the initial requirement for calcium mineral homeostasis before birth, followed by the need for trabecular architecture to adapt to mechanical loading after birth. Calcium is essential for growing neonates and therefore osteoclastic resorbtion is up regulated by increasing parathyroid hormone levels. This may account for the loss of bone between 0–1 year. At one year infants begin to walk bipedally, thus weight bearing and ground reaction forces increase. The stable bone volume and increase in organisation of trabecular architecture after one year may reflect increasing weight bearing and ground reaction forces. These findings suggest that nutritional requirements after birth may have a stronger influence on vertebral trabeculae architecture than learning to walk


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 84 - 84
1 Jan 2017
Osagie L Sanghani-Kerai A Coathup M Briggs T Blunn G
Full Access

Intermittent parathyroid hormone 1–34 (teriparatide) is the N-fragment terminal of the intact hormone, currently in clinical use to treat osteoporosis. Unlike anti-catabolic agents such as bisphosphonates, PTH 1–34 not only affects the osteoclast, but also up regulates bone formation via both modelling and remodelling mechanisms. The actions of iPTH on mesenchymal stem cell differentiation (MSCs) may underpin a further method in the treatment of osteoporosis specifically, and for fracture healing in general. Stem cells from older female osteoporotic animals have reduced activity and poorer osteogenic potential; additionally, their migration to and retention at sites of increased bone turnover are reduced in comparison to cells from younger animals. The aim of this study was to isolate bone marrow derived MSCs from both young Wild Type (WT) and ovarectomized senile (OVX) rats, then to investigate and compare the effect of pulsatile and continuous PTH administration on migration to SDF-1, proliferation and osteogenic differentiation. MSCs were harvested from the femora of 6–9week Wistar rats, and from 10–13month ovarectomized rats with established osteopenia. Cells were cultured with 25, 50 and 100nmMol of PTH 1–34 added to osteogenic media either continuously or in a pulsatile fashion for 6 hours in every 72hour cycle. ALP and Alizarin Red were used to assess the optimal concentration of PTH for osteogenic differentiation. Subsequently, proliferation was assessed with Alamar Blue and cells were seeded in a Boyden chamber to quantify the migration to SDF-1. As the data was parametric a student t-test was used to analyse results, and a p value < 0.05 was considered significant. ALP and Alizarin Red parameters were significantly increased for both WT and OVX groups at 50nmMol of pulsatile PTH in comparison to groups cultured in 25 or 100nmMol. Continuous administration at all concentrations led to reduced calcium phosphate deposition by day 21 in all groups. Interestingly, in comparison to cells cultured in osteogenic media, 50nmMol of pulsatile PTH lead to statistically significant higher ALP and Alizarin Red measurements up to day 10 and 14 respectively in WT cells, and days 10 and 21 in OVX cells. The proliferation rate normalised against DNA was similar for both OVX and WT rats at all-time points. PTH administration did not effect cell proliferation in any group. WT MSCs not only had improved osteogenic differentiation, but also showed increased migration to SDF-1 in comparison to OVX groups. Pulsatile PTH led to further increases in migration of both OVX and WT cells. Intermittent PTH increases the osteogenic diffrentiation and migration of MSCs from both young and ovarectomised rats, though importantly this effect is not dose dependent. Ultimately, the role of PTH 1–34 on MSCs may lead to improved bone formation and cell homing capacity-particularly in the context of osteoporosis


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 6 | Pages 1076 - 1082
1 Nov 1999
Iwasaki M Jikko A Le AX

Bone morphogenetic protein (BMP) has a crucial role in osteochondrogenesis of bone formation as well as in the repair of fractures. The interaction between hedgehog protein and BMPs is inferred from recent molecular studies. Hedgehog genes encode secreted proteins which mediate patterning and growth during skeletal development. We have shown that Indian hedgehog gene (Ihh) is expressed in cartilage anlage and later in mature and hypertrophic chondrocytes. This finding suggests that Ihh may regulate the development of chondrocytes. Our results in this study have shown that Ihh transcripts were expressed in hypertrophic chondrocytes in mice at three days but not at three weeks, although a similar expression pattern of α1 (X) collagen could be observed in both types of cartilage. To investigate the possibility that there are direct and age-dependent functions of Ihh in chondrocytes, cultured chondrocytes were treated with the amino-terminal fragment of Sonic hedgehog protein (Shh-N) which can functionally substitute for Ihh protein. Shh-N did not affect the proliferation and differentiation of chondrocytes from three-week-old mice but had a significant effect on three-day-old mice. It enhanced proliferation up to 128% of the control culture in a dose-dependent manner. Although there was no effect in Shh-N-treated cultures, Shh-N enhanced the stimulatory effect of parathyroid hormone (PTH) on the synthesis of proteoglycans. Because the effects of Shh-N on chondrocyte differentiation in this culture system differed from those of bone morphogenetic protein-2 (BMP2) and PTH, in terms of proteoglycan synthesis and ALPase activity, it is unlikely that BMP2 or PTH/PTH-related protein mediates the direct effects of Ihh in chondrocytes. Our study shows that Ihh can function in chondrocytes in a direct and age-dependent fashion


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 6 - 6
1 Jul 2014
Bostrom M Courtland H Grosso M Sutherland J Stoner K Yang X van der Meulen M
Full Access

Summary Statement. The modulation of both quantity and quality of peri-implant bone with either PTH or loading may be viable options to improve implant fixation and patient outcomes. A strong bone-implant interface is essential for successful joint replacement surgery. This study investigated the differences in bone surrounding and within a porous titanium implant after single or combined treatment with two anabolic bone therapies: intermittent parathyroid hormone (teriparatide) and mechanical loading. Porous titanium implants were inserted bilaterally on the distal lateral femurs of rabbits. The right implant was loaded daily (1 MPa, 50 cycles/day) while the left implant was not. Rabbits received daily PTH injections (20 ug/kg) or saline vehicle. Periprosthetic cancellous bone 0.5, 1.0, and 2.0 mm below the implant surface, bone at the 0.25 mm bone-implant interface and total bone within each implant were examined using tissue-level analyses (quantitative backscattered electron microscopy), cellular analyses (immunohistochemistry staining of osteoblasts with procollagen-1 and TRAP staining of osteoclasts), and shear testing (implant-bone interface). Statistical significance was determined using GEE models (p<0.05). For tissue located 0.5 mm below the implant, significant increases in bone area per total area (BA/TA) were observed with PTH treatment (56%) and with loading (27%). Further, an 18% increase in mineralization density with PTH treatment and a 20% increase in mineralization density with loading was found. Loading effects were not present beyond the 0.5 mm periprosthetic region, but PTH significantly increased BA/TA 2.0 mm below and mineralization density 1.0 mm below the implant. Tissue-level changes were supported by increases in osteoblast activity 0.5 mm below the implant with PTH (79%) and loading (34%), as well as by minimal osteoclast changes. At the 0.25 mm implant-bone interface PTH and loading increased BA/TA (16% and 23%, respectively), but only loading increased mineralization density (7%). Further, total integrated bone area was increased 35% with PTH. Both PTH and loading enhanced the mechanical integrity of the implant-bone; shear strength increased 34% and 60%, respectively. Although combined treatment was not synergistic, both PTH and loading individually enhanced the amount and mineralization density of bone at the implant interface and immediately below the interface, thereby increasing the mechanical strength of the metal-bone interface. This research suggests that modulation of both quantity and quality of peri-implant bone may be viable options to improve implant fixation and patient outcomes


Objectives

Adult mice lacking the transcription factor NFAT1 exhibit osteoarthritis (OA). The precise molecular mechanism for NFAT1 deficiency-induced osteoarthritic cartilage degradation remains to be clarified. This study aimed to investigate if NFAT1 protects articular cartilage (AC) against OA by directly regulating the transcription of specific catabolic and anabolic genes in articular chondrocytes.

Methods

Through a combined approach of gene expression analysis and web-based searching of NFAT1 binding sequences, 25 candidate target genes that displayed aberrant expression in Nfat1-/- AC at the initiation stage of OA, and possessed at least four NFAT1 binding sites in the promoter of each gene, were selected and tested for NFAT1 transcriptional activities by chromatin immunoprecipitation (ChIP) and promoter luciferase reporter assays using chondrocytes isolated from the AC of three- to four-month-old wild-type mice or Nfat1-/- mice with early OA phenotype.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 173 - 178
1 Feb 2018
Peng X Wu X Zhang J Zhang G Li G Pan X

Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment.

Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 264 - 270
1 Feb 2009
Hasegawa T Miwa M Sakai Y Niikura T Kurosaka M Komori T

The haematoma occurring at the site of a fracture is known to play an important role in bone healing. We have recently shown the presence of progenitor cells in human fracture haematoma and demonstrated that they have the capacity for multilineage mesenchymal differentiation. There have been many studies which have shown that low-intensity pulsed ultrasound (LIPUS) stimulates the differentiation of a variety of cells, but none has investigated the effects of LIPUS on cells derived from human fracture tissue including human fracture haematoma-derived progenitor cells (HCs). In this in vitro study, we investigated the effects of LIPUS on the osteogenic activity of HCs. Alkaline phosphatase activity, osteocalcin secretion, the expression of osteoblast-related genes and the mineralisation of HCs were shown to be significantly higher when LIPUS had been applied but without a change in the proliferation of the HCs. These findings provide evidence in favour of the use of LIPUS in the treatment of fractures.


Bone & Joint Research
Vol. 1, Issue 9 | Pages 218 - 224
1 Sep 2012
Tabuchi K Soejima T Kanazawa T Noguchi K Nagata K

Objectives

The purpose of this study was to evaluate chronological changes in the collagen-type composition at tendon–bone interface during tendon–bone healing and to clarify the continuity between Sharpey-like fibres and inner fibres of the tendon.

Methods

Male white rabbits were used to create an extra-articular bone–tendon graft model by grafting the extensor digitorum longus into a bone tunnel. Three rabbits were killed at two, four, eight, 12 and 26 weeks post-operatively. Elastica van Gieson staining was used to colour 5 µm coronal sections, which were examined under optical and polarised light microscopy. Immunostaining for type I, II and III collagen was also performed.