Abstract. Introduction. Minimising postoperative complications and mortality in COVID-19 patients who were undergoing trauma and orthopaedic surgeries is an international priority. Aim was to develop a predictive nomogram for 30-day morbidity/mortality of COVID-19 infection in patients who underwent orthopaedic and trauma surgery during the coronavirus pandemic in the UK in 2020 compared to a similar period in 2019. Secondary objective was to compare between patients with positive
The infected joint arthroplasty continues to be a very challenging problem. No test has 100% diagnostic accuracy for PPI and the treating surgeon must correlate the clinical and radiographic presentation with a combination of blood tests, synovial fluid analysis, microbiological and histopathological evaluation of periprosthetic tissue and intra-operative inspection to reach a definitive diagnosis. Diagnosis should begin with a high index of suspicion for new onset of pain or symptoms in well-functioning joints. Plain radiographs may identify osteolysis or early signs of implant failure and should be promptly investigated further for PPI. Peripheral blood ESR and CRP remain the most widely used next step for the diagnosis of PPI. Both these tests are widely available, inexpensive, and have a rapid turnaround time in laboratories. The results should be interpreted with caution due to their relative lack of specificity. The sensitivity and specificity values for CRP are approximately 88 and 74%, respectively; while that of ESR is slightly lower at 75 and 70%, respectively. The combined ESR and CRP tests are 96% sensitive for ruling out PPI but the specificity of this combination is as low as 56%. Advanced imaging modalities may be used as a part of the diagnostic algorithm. However, they require expert interpretation and are limited by availability and high costs. When available they have high sensitivity and specificity but their routine use is not recommended and indications have to be individualised in the light of clinical presentation. In the presence of high clinical suspicion, the clinician should plan synovial fluid analysis. This provides a synovial fluid white cell count with differential cell count, specimen for culture and possibility of analyzing other synovial fluid markers. It is important to note that failed metal-on-metal hip arthroplasties can give a falsely elevated synovial fluid cell count when using automated cell counters. This can be overcome by manually counting cell numbers. Synovial fluid should be directly into blood culture bottles, and antibiotics should be withheld at least 2 weeks prior to aspiration, whenever possible. Cultures also help establish the organism, virulence and sensitivities that help plan subsequent treatment algorithm. Periprosthetic tissue biopsy provides valuable information in microbiological diagnosis and workup of PPI. Routine use of gram staining is not recommended due to poor sensitivity. However, frozen section may have some role especially when performed by a skilled pathologist. Tissue culture remains the gold standard for diagnosis despite false-positive and false-negative results. Whenever possible multiple samples should be obtained to aid interpretation. A threshold of 2 to 3 positive specimens yielding indistinguishable microorganisms has been recommended to improve sensitivity. Acute inflammation, evidenced by neutrophilic infiltrate on fixed or frozen tissue, is suggestive of PPI and is defined as the presence of at least 5 neutrophils per high-powered field, in at least 5 separate microscopic fields. Sonication of removed prosthetic components is used to dislodge the biofilm and the associated bacteria from the surface of the implant. The fluid surrounding the implant can be used for culture or analysis.
The diagnosis of periprosthetic joint infection may be difficult with patients presenting months or years after initial surgery with surgery-associated or haematogenously spread bacteria. Synovasure™ is a new point of care assay that measures alpha defensin produced by activated leucocytes in joints; it is licensed for the diagnosis of periprosthetic joint infections. We sought to include alpha defensin testing in a testing algorithm to improve the diagnosis of periprosthetic joint infection. An algorithm for testing patients with suspected periprosthetic joint infection was developed and agreed among knee surgeons in Gloucestershire, UK. Data was prospectively collected on all tests performed along with information on how the results of the alpha defensin test altered patient management. A sample of joint fluid was taken using aseptic technique in theatre and tested for alpha defensin production at the point of care. Samples were then referred for standard culture and selected samples for 16SrRNA PCR. 12 patients were assayed for alpha defensin in periprosthetic joint fluid during 2015. 7 patients were female, 5 male and ages ranged 64–86 years. 10 patients had a negative point of care alpha defensin test. Only 2 of these patients also had a leukeocyte esterase (LE) test performed and these were negative. The culture results from all samples were negative for both direct and enrichment cultures. 3 samples also had 16SrRNA PCR performed and these were negative. 2 patient samples tested positive for alpha defensin. LE tests were not performed. Both samples were culture negative on direct and enrichment culture however both samples were also referred for 16SrRNA PCR which detected DNA compatible with Staphylococcus caprae/capitis/ saccharolyticus/epidermidis from 1 patient and DNA with homology to Streptococcus gallolyticus/equinusI for the other. Alpha defensin testing improved the diagnosis of prosthetic joint infection. A positive alpha defensin test may be used to select patients for whom 16SrRNA
The infected joint arthroplasty continues to be a very challenging problem. No test has 100% diagnostic accuracy for PPI and the treating surgeon must correlate the clinical and radiographic presentation with a combination of blood tests, synovial fluid analysis, microbiological and histopathological evaluation of periprosthetic tissue and intra-operative inspection to reach a definitive diagnosis. Diagnosis should begin with a high index of suspicion for new onset of pain or symptoms in well-functioning joints. Plain radiographs may identify osteolysis or early signs of implant failure and should be promptly investigated further for PPI. Peripheral blood ESR and CRP remain the most widely used next step for the diagnosis of PPI. Both these tests are widely available, inexpensive, and have a rapid turnaround time in laboratories. The results should be interpreted with caution due to their relative lack of specificity. The sensitivity and specificity values for CRP are approximately 88 and 74%, respectively; while that of ESR is slightly lower at 75 and 70%, respectively. The combined ESR and CRP tests are 96% sensitive for ruling out PPI but the specificity of this combination is as low as 56%. Advanced imaging modalities may be used as a part of the diagnostic algorithm. However, they require expert interpretation and are limited by availability and high costs. When available they have high sensitivity and specificity but their routine use is not recommended and indications have to be individualised in the light of clinical presentation. In the presence of high clinical suspicion, the clinician should plan synovial fluid analysis. This provides a synovial fluid white cell count with differential cell count, specimen for culture and possibility of analyzing other synovial fluid markers. It is important to note that failed metal-on-metal hip arthroplasties can give a falsely elevated synovial fluid cell count when using automated cell counters. This can be overcome by manually counting cell numbers. Synovial fluid should be directly into blood culture bottles, and antibiotics should be withheld at least 2 weeks prior to aspiration, whenever possible. Cultures also help establish the organism, virulence and sensitivities that help plan subsequent treatment algorithm. Periprosthetic tissue biopsy provides valuable information in microbiological diagnosis and workup of PPI. Routine use of gram staining is not recommended due to poor sensitivity. However, frozen section may have some role especially when performed by a skilled pathologist. Tissue culture remains the gold standard for diagnosis despite false-positive and false-negative results. Whenever possible multiple samples should be obtained to aid interpretation. A threshold of 2 to 3 positive specimens yielding indistinguishable microorganisms has been recommended to improve sensitivity. Acute inflammation, evidenced by neutrophilic infiltrate on fixed or frozen tissue, is suggestive of PPI and is defined as the presence of at least 5 neutrophils per high-powered field, in at least 5 separate microscopic fields. Sonication of removed prosthetic components is used to dislodge the biofilm and the associated bacteria from the surface of the implant. The fluid surrounding the implant can be used for culture or analysis.
Aim. The purpose of this study was to establish the diagnostic utility and spectrum of fluoroscopy guided percutaneous transpedicular biopsies of the thoraco-lumbar spine performed at our institution and to review some aspects regarding the diagnosis of spinal tuberculosis (TB). Methods. A retrospective study was performed on a consecutive series of 48 patients who underwent fluoroscopy guided percutaneous transpedicular biopsies of the spine performed at our institution. Biopsy specimens were sent for microscopy, culture and sensitivity (MC&S) as well as for TB microscopy, culture and polymerase chain reaction (PCR) and for histology. Results. There were 26 females and 22 males. The ages ranged from 23 to 79 years with a mean of 47 years. Fifteen biopsies were performed in the thoracic spine and 33 in the lumbar spine. A diagnosis was established in 83% of patients. The most common diagnosis, made in 58% of cases, was TB. The second most common diagnosis was metastatic disease, diagnosed in 15%. In 3 patients a diagnosis was made of concomitant TB and metastatic adenocarcinoma. No complications were encountered. Regarding the diagnosis of spinal TB we found that microscopy for alcohol and acid fast bacilli has a very low yield, with TB cultures, PCR and histology delivering a higher yield. TB PCR was also found to be positive in some cases where the TB cultures were negative which had implications for our institution's protocol regarding performance of TB
There is little published on the outcomes after restarting elective orthopaedic procedures following cessation of surgery due to the COVID-19 pandemic. During the pandemic, the reported perioperative mortality in patients who acquired SARS-CoV-2 infection while undergoing elective orthopaedic surgery was 18% to 20%. The aim of this study is to report the surgical outcomes, complications, and risk of developing COVID-19 in 2,316 consecutive patients who underwent elective orthopaedic surgery in the latter part of 2020 and comparing it to the same, pre-pandemic, period in 2019. A retrospective service evaluation of patients who underwent elective surgical procedures between 16 June 2020 and 12 December 2020 was undertaken. The number and type of cases, demographic details, American society of Anesthesiologists (ASA) grade, BMI, 30-day readmission rates, mortality, and complications at one- and six-week intervals were obtained and compared with patients who underwent surgery during the same six-month period in 2019.Aims
Methods
The aim of this study was to surveil whether the standard operating procedure created for the NHS Golden Jubilee sufficiently managed COVID-19 risk to allow safe resumption of elective orthopaedic surgery. This was a prospective study of all elective orthopaedic patients within an elective unit running a green pathway at a COVID-19 light site. Rates of preoperative and 30-day postoperative COVID-19 symptoms or infection were examined for a period of 40 weeks. The unit resumed elective orthopaedic services on 29 June 2020 at a reduced capacity for a limited number of day-case procedures with strict patient selection criteria, increasing to full service on 29 August 2020 with no patient selection criteria.Aims
Methods
The risk to patients and healthcare workers of resuming elective orthopaedic surgery following the peak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been difficult to quantify. This has prompted governing bodies to adopt a cautious approach that may be impractical and financially unsustainable. The lack of evidence has made it impossible for surgeons to give patients an informed perspective of the consequences of elective surgery in the presence of SARS-CoV-2. This study aims to determine, for the UK population, the probability of a patient being admitted with an undetected SARS-CoV-2 infection and their resulting risk of death; taking into consideration the current disease prevalence, reverse transcription-polymerase chain reaction (RT-PCR) testing, and preassessment pathway. The probability of SARS-CoV-2 infection with a false negative test was calculated using a lower-end RT-PCR sensitivity of 71%, specificity of 95%, and the UK disease prevalence of 0.24% reported in May 2020. Subsequently, a case fatality rate of 20.5% was applied as a worst-case scenario.Aims
Methods
To establish if COVID-19 has worsened outcomes in patients with AO 31 A or B type hip fractures. Retrospective analysis of prospectively collected data was performed for a five-week period from 20 March 2020 and the same time period in 2019. The primary outcome was mortality at 30 days. Secondary outcomes were COVID-19 infection, perioperative pulmonary complications, time to theatre, type of anaesthesia, operation, grade of surgeon, fracture type, postoperative intensive care admission, venous thromboembolism, dislocation, infection rates, and length of stay.Aims
Methods
Elective surgery has been severely curtailed as a result of the COVID-19 pandemic. There is little evidence to guide surgeons in assessing what processes should be put in place to restart elective surgery safely in a time of endemic COVID-19 in the community. We used data from a stand-alone hospital admitting and operating on 91 trauma patients. All patients were screened on admission and 100% of patients have been followed-up after discharge to assess outcome.Aims
Methods
This article presents an overview of mycetoma
and offers guidelines for orthopaedic surgeons who may be involved in
the care of patients with this condition. Cite this article:
Severe acute respiratory syndrome (SARS) is a newly described infectious disease caused by the SARS coronavirus which attacks the immune system and pulmonary epithelium. It is treated with regular high doses of corticosteroids. Our aim was to determine the relationship between the dosage of steroids and the number and distribution of osteonecrotic lesions in patients treated with steroids during the SARS epidemic in Beijing, China in 2003. We identified 114 patients for inclusion in the study. Of these, 43 with osteonecrosis received a significantly higher cumulative and peak methylprednisolone-equivalent dose than 71 patients with no osteonecrosis identified by MRI. We confirmed that the number of osteonecrotic lesions was directly related to the dosage of steroids and that a very high dose, a peak dose of more than 200 mg or a cumulative methylprednisolone-equivalent dose of more than 4000 mg, is a significant risk factor for multifocal osteonecrosis with both epiphyseal and diaphyseal lesions. Patients with diaphyseal osteonecrosis received a significantly higher cumulative methylprednisolone-equivalent dose than those with epiphyseal osteonecrosis. Multifocal osteonecrosis should be suspected if a patient is diagnosed with osteonecrosis in the shaft of a long bone.