Aims. The aim of this study was to develop and evaluate machine-learning-based computerized adaptive tests (CATs) for the
While clinically important improvements in
While clinically important improvements in
Background. Unexplained pain is one of the most common complications after
It is very important for implanting tibial component to prevent bearing dislocation in
The
Source of the study: University of Auckland, Auckland, New Zealand and University of Otago, Christchurch, New Zealand. The
Purpose. the purpose of this study was to compare the rollback ratio in the bi-cruciate substituting BCS-TKA and the
Background.
Medial unicompartmental knee arthroplasty (UKA) is undertaken in patients with a passively correctable varus deformity. Our hypothesis was that restoration of natural soft tissue tension would result in a comparable lower limb alignment with the contralateral normal lower limb after mobile-bearing medial UKA. In this retrospective study, hip-knee-ankle (HKA) angle, position of the weight-bearing axis (WBA) and knee joint line obliquity (KJLO) after mobile-bearing medial UKA was compared with the normal (clinically and radiologically) contralateral lower limb in 123 patients.Aims
Patients and Methods
The Oxford Unicompartmental Knee Replacement (OUKA) is the most popular unicompartmental knee replacement (UKR) in the New Zealand Joint Registry with the majority utilising cementless fixation. We report the 10-year radiological outcomes. This is a prospective observational study. All patients undergoing a cementless OUKA between May 2005 and April 2011 were enrolled. There were no exclusions due to age, gender, body mass index or reduced bone density. All knees underwent fluoroscopic screening achieving true anteroposterior (AP) and lateral images for radiographic assessment. AP assessment for the presence of radiolucent lines and coronal alignment of the tibial and femoral components used Inteliviewer radiographic software. The lateral view was assessed for lucencies as well as sagittal alignment.Introduction
Methods
Excessive under correction of varus deformity may lead to early failure and overcorrection may cause progressive degeneration of the lateral compartment following medial unicompartmental knee arthroplasty (UKA). However, what influences the postoperative limb alignment in UKA is still not clear. This study aimed to evaluate postoperative limb alignment in minimally-invasive
This study aims to correlate
Introduction. The
A large proportion of wait times for primary total knee (TKA) and hip (THA) arthroplasty is the time from primary care referral to surgical consultation. To our knowledge, no study has investigated whether a referral
Time analysis from video footage gives a simple outcome measure of surgical practice against a measured model of use. The added detail that can be produced, over simply recording the usual surgical process data such as tourniquet times, allows us to identify and time the sequence of surgical procedures as stages, to describe issues, and the identification of idiosyncratic behaviours for review and comparison. Makoplasty (Mako surgical corp. FL, US) partial knee operation times were compared using this technique with those from the
The Oxford unicompartmental knee replacement (UKR) was introduced in 1976 with good results. Mobile bearings in the lateral compartment have been associated with unacceptably high bearing dislocation rates, due to greater movement between the lateral femoral condyle and tibia, and the lateral collateral ligament's laxity in flexion. The new domed implant is designed to counter this with a convex tibial prosthesis and a fully-congruent, bi-concave mobile bearing allowing a full range-of-movement (ROM), minimising dislocation risk and bearing wear. We present complication rates and clinical outcomes for a consecutive series of our first 20 patients undergoing
Method. We prospectively investigated the radiological outcomes of the uncemented
Objective. Mobile bearing unicompartmental knee arthroplasty (UKA) is an effective and safe treatment for osteoarthritis of the medial compartment. However, mobile-bearing UKA needs accurate ligament balancing of flexion and extension gaps to prevent dislocation of the mobile meniscal bearing. Instability can lead to dislocation of the insert. The phase 3 instruments of the