Several emerging reports suggest an important involvement of the hindfoot alignment in the outcome of knee osteotomy. At present, studies lack a comprehensive overview. Therefore, we aimed to systematically review all biomechanical and clinical studies investigating the role of the hindfoot alignment in the setting of osteotomies around the knee. A systematic literature search was conducted on multiple databases combining “knee osteotomy” and “hindfoot/ankle alignment” search terms. Articles were screened and included according to the PRISMA guidelines. A quality assessment was conducted using the Quality Appraisal for Cadaveric Studies (QUACS) - and modified methodologic index for non-randomized studies (MINORS) scales. Three cadaveric, fourteen retrospective cohort and two case-control studies were eligible for review. Biomechanical hindfoot characteristics were positively affected (n=4), except in rigid subtalar joint (n=1) or talar tilt (n=1) deformity. Patient symptoms and/or radiographic alignment at the level of the hindfoot did also improve after knee osteotomy (n=13), except in case of a small pre-operative lateral distal tibia- and hip knee ankle (HKA) angulation or in case of a large HKA correction (>14.5°). Additionally, a pre-existent hindfoot deformity (>15.9°) was associated with undercorrection of lower limb alignment following knee osteotomy. The mean QUACS score was 61.3% (range: 46–69%) and mean MINORS score was 9.2 out of 16 (range 6–12) for non-comparative and 16.5 out of 24 (range 15–18) for comparative studies.
Conventional proximal tibial osteotomy is a widely successful joint-preserving treatment for osteoarthritis; however, conventional procedures do not adequately control the posterior tibial slope (PTS). Alterations to PTS can affect knee instability, ligament tensioning, knee kinematics, muscle and joint contact forces as well as range of motion. This study primarily aimed to provide a comprehensive investigation of the variables influencing PTS during high tibial osteotomy using a 3D surgical simulation approach. Secondly, it aimed to provide a simple means of implementing the findings in future 3D pre-operative planning and /or clinically. The influence of two key variables: the gap opening angle and the hinge axis orientation on PTS was investigated using three independent approaches: (1) 3D computational simulation using CAD software to perform virtual osteotomy surgery and simulate the post-operative outcome. (2) Derivation of a closed-form mathematical solution using a generalised vector rotation approach (3) Clinical assessment of synthetically generated x-rays of osteoarthritis patients (n=28; REC reference: 17/HRA/0033, RD&E NHS, UK) for comparison against the theoretical/computational approaches. The results from the computational and analytical assessments agreed precisely. For three different opening angles (6°, 9° and 12°) and 7 different hinge axis orientations (from −30° to 30°), the results obtained were identical. A simple analytical solution for the change in PTS, ΔPs, based on the hinge axis angle, α, and the osteotomy opening angle, θ, was derived: ΔPs=sin-1(sin α sin θ) The clinical assessment demonstrated that the absolute values of PTS, and changes resulting from various osteotomies, matched the results from the two relative prediction methods. This study has demonstrated that PTS is impacted by the hinge axis angle and the extent of the osteotomy opening angle and provided computational evidence and analytical formula for general use.
Complex spinal deformities can cause pain, neurological symptoms and imbalance (sagittal and/or coronal), severely impairing patients’ quality of life and causing disability. Their treatment has always represented a tough challenge: prior to the introduction of modern internal fixation systems, the only option was an arthrodesis to prevent worsening of the deformity. Then, the introduction of pedicle screws allowed the surgeons to perform powerful corrective manoeuvres, distributing forces over multiple levels, to which eventually associate osteotomies. In treating flexible coronal deformities, in-ternal fixation and corrective manoeuvres may be sufficient: the combination of high density pedicle screws and direct vertebral rotation revolutionized surgical treatment of scoliosis. However, spinal osteotomies are needed for correcting complex rigid deformities; the type of osteot-omy must be chosen according to the aetiology, type and apex of the deformity. When dealing with large radius deformities, spread over multiple levels and without fusion, multiple posterior column os-teotomies such as Smith-Petersen and Ponte (asymmetric, when treating scoliosis) can be performed, dissipating the correction over many levels. Conversely, the management of a sharp, angulated de-formity that involves a few vertebral levels and/or with bony fusion, requires more aggressive 3 col-umn osteotomies such as Pedicle Subtraction
Fracture fixation has advanced significantly with the introduction of locked plating and minimally invasive surgical techniques. However, healing complications occur in up to 10% of cases, of which a significant portion may be attributed to unfavorable mechanical conditions at the fracture. Moreover, state-of-the-art plates are prone to failure from excessive loading or fatigue. A novel biphasic plating concept has been developed to create reliable mechanical conditions for timely bone healing and simultaneously improve implant strength. The goal of this study was to test the feasibility and investigate the robustness of fracture healing with a biphasic plate in a large animal experiment. Twenty-four sheep underwent a 2mm mid-diaphyseal tibia osteotomy stabilized with either the novel biphasic plate or a control locking plate. Different fracture patterns in terms of defect location and orientation were investigated. Animals were free to fully bear weight during the post-operative period. After 12 weeks, the healing fractures were evaluated for callus formation using micro-computer tomography and strength and stiffness using biomechanical testing. No plate deformation or failures were observed under full weight bearing with the biphasic plate.
We have assessed the influence of isolated and combined rotational malunion of the radius and ulna on the rotation of the forearm.
We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice.Objectives
Methods
Acetabular dysplasia was produced in 24 immature white rabbits. A rotational acetabular osteotomy was then carried out and radiological and histological studies of the articular cartilage were made. In the hips which did not undergo osteotomy, radiographs at 26 weeks showed that residual subluxation remained and arthritic changes such as narrowing of the joint space or dislocation were still seen. However, in the operated group there was a remarkable increase in cover, but arthritic changes were not observed. After 24 weeks, the Mankin grading score in the operated group was significantly lower than that in the non-operated group. The latter hips showed an irregular surface of the cartilage, exfoliation and proliferation of synovial tissue. In those undergoing osteotomy, primary cloning of chondrocytes or hypercellularity was seen and at 24 weeks after operation and metaplasia of the cartilage in the fibrous tissue was observed in the boundary between the medial area of the acetabulum and the acetabular fossa.