Aims. Distraction osteogenesis with intramedullary lengthening devices has undergone rapid development in the past decade with implant enhancement. In this first single-centre matched-pair analysis we focus on the comparison of treatment with the PRECICE and STRYDE intramedullary lengthening devices and aim to clarify any clinical and radiological differences. Methods. A single-centre 2:1 matched-pair retrospective analysis of 42 patients treated with the STRYDE and 82 patients treated with the PRECICE nail between May 2013 and November 2020 was conducted. Clinical and lengthening parameters were compared while focusing radiological assessment on osseous alterations related to the nail’s telescopic junction and locking bolts at four different stages. Results.
The osteolytic process of osteomyelitis is, according to textbooks, caused by increased osteoclast activity due to RANKL production by osteoblasts. However, recent findings contradict this theory. Therefore, the aim was to investigate, in a porcine osteomyelitis model, how osteolysis is affected by massive inflammation and RANKL blocking, respectively. In parallel, patients with chronic osteomyelitis, diabetes, foot osteomyelitis, and fracture related infections (FRI) were included for advanced histological analysis of osteolysis. In pigs, a tibial implant cavity was created and inoculated with 104 CFU of Aim
Methods
Introduction. Osteloysis following metal-on-UHMW polyethylene Total Hip Arthroplasty (THA) is well reported, as is lack of osteolysis following Ceramic-on-Ceramic (CoC)THA. Early ceramic failures did report some osteolysis, but in flawed implants. As 3rd and now 4th generation ceramic THAs come into mid- and long-term use, the orthopaedic community has begun to see reports of high survival rates and very low incidence of osteolysis in these bearings.
Background/Purpose. Cross-linked polyethylene (XLPE) has shown reduced wear rates as compared to conventional polyethylene, but the long-term effect of this on the incidence of osteolysis remains unclear. In addition, the measurement of osteolysis on plain radiographs can underestimate the incidence and extent of osteolysis. Therefore, we evaluated the wear rate, incidence and volume of osteolysis at a minimum follow-up of ten years using three-dimensional computed tomography (3-D CT), a more accurate and sensitive method for detecting and measuring the size of osteolysis than plain radiographs. Materials and Methods. Between 2000 and 2004, 233 primary THAs were performed using 28-mm cobalt-chrome femoral head on first-generation XLPE (Longevity. ®. , Zimmer, Warsaw, IN) with cups of identical design. Fifty-five patients (57 hips) deceased, eight patients (8 hips) were lost and four patients (4 hips) were revised due to recurrent dislocation (2 hips) or infection (2 hips). Among the remaining 164 hips, 95 hips underwent 3-D CT scanning (Aquilion® 64, Lightspeed Ultra® 16 or Optima® 660) at minimum 10 years (range, 10.0 to 15.2) and were included in this study. Mean age at the time of THA was 56.2 years and average body mass index was 23.5 kg/m. 2. Average cup size was 55.4 mm whereas mean inclination and anteversion angle of cups on CT scan were 40.1 and 17.4 degrees, respectively. Average follow-up period was 12.8 years. 2D wear rate was measured using PolyWare® 3D Rev 7 software (Draftware Inc, Vevay, IN).
The most frequent cause of failure after total
hip replacement in all reported arthroplasty registries is peri-prosthetic
osteolysis.
Introduction. There has been almost universal adoption of highly cross-linked polyethylene as the polyethylene of choice in metal-on-polyethylene articulations in total hip replacement (THR). Although wear of conventional polyethylene has been shown to be related to periprosthetic osteolysis, the relationship between wear of highly cross-linked polyethylene and osteolysis remains uncertain. Our aim was to determine the incidence and volume of periacetabular osteolysis at a minimum of seven years following primary THR with metal on highly cross-linked polyethylene articulations. Methods. 644 patients were enrolled into a randomised controlled trial which examined the effect of articulation size (28 vs 36 mm) on the incidence of dislocation one year following THR. To date, 62 patients (34 patients – 28 mm articulation; 28 patients – 36 mm articulation) have undergone a quantitative computed tomography (CT) scan, with metal artefact reduction protocol, to detect and measure osteolysis at a minimum of seven years following THR.
This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported. This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed.Aims
Methods
Periacetabular osteolysis in association with well-fixed cementless components was first recognised as a serious clinical problem in the early 1990s. By the mid-1990s, revision surgery for pelvic osteolysis secondary to polyethylene wear was the most common revision hip procedure performed. As a result, new bearing surfaces were introduced in hopes of reducing wear volume and thus reducing pelvic osteolysis. These included highly crosslinked polyethylene, ceramic-on-ceramic and metal-on-metal bearing surfaces. Metal-on-metal has for the most part been eliminated in conventional hip replacement because of the concerns centered around adverse local tissue reactions. Both highly crosslinked polyethylene and ceramic-on-ceramic bearings have been successful in limiting wear and all but eliminating clinically significant osteolysis. Multiple reports on highly crosslinked polyethylene have documented wear rates below the lysis threshold. No reports of revision for wear have been reported despite twenty years of in-vivo use. Of import to the surgeons, all manufacturers commonly used in North America have performed well. In addition, highly crosslinked polyethylene has been relatively insensitive to head size allowing the use of 36mm femoral heads routinely. Similar reports are noted with ceramic-on-ceramic bearings. However, highly crosslinked has dominated the North American market because it is a relatively forgiving bearing surface and comes at a lower cost. Currently, there is a trend towards the use of ceramic femoral heads – not because of wear concerns, but concerns related to taper corrosion and large cobalt-chrome femoral heads.
Contemporary crosslinked polymers didn't just happen. The material was, has, and continues to be studied more than any other bearing surface material used in the total hip and total knee replacement construct. Historical failures and successes provided the information needed to make it the success that it is today as we approach the end of the second decade of extensive use. Recognition that wear particles, not cement, was the major cause of osteolysis was important. Next, understanding that oxidation from free radical formation was deleterious to wear resistant polyethylene was understood and finally, that crosslinking was responsible for magnitude increases in wear resistance. Although manufacturers have developed multiple processes to develop their crosslinked polymers (gamma and e beam radiation, melting and annealing, and most recently the addition of antioxidants) there are excellent 10-year results demonstrating head penetration rates (indicative of wear and creep) in the 0.02 to 0.04 mm/year range for many materials with minimal if any detection of osteolysis on radiographs and close to 0% revised for wear at 10+ years. Are there any cautions? Recently, at 10- to 15-year follow up, some clinically insignificant osteolysis has been noted in one study and in that same study, 36 mm heads had twice the volumetric wear as 32 mm heads, but it was still a relatively low volume compared to the previous generation polyethylenes. We need further follow up, but at two decades of use, crosslinked polymers have dramatically reduced the osteolysis problem.
The interest in osteolysis has waned largely due to the impact of crosslinked polyethylene and the “rarity” of this phenomenon. However, the basic process still remains: particles, motion observed with unstable implants and host specific factors all play a role in bone loss around implants. There are 2 predominant patterns of lysis: Linear versus Expansile. Linear Lysis: is focal bone loss at the interface as seen in the bone cement interface in when using acrylic or at the implant-host interface with porous ingrowth/ongrowth implants. Expansile Lysis: is observed in less contained regions such as the retro- and supra-acetabular regions around the socket. These lesions can also be quite extensive yet may be subtle in appearance. Imaging is essential in identifying the extent and magnitude of osteolysis. Available modalities include plain radiographs although they can be of limited value in that even with oblique views, they often underestimate the degree of bone loss. CT scans are useful but can be limited by artifact. Several centers have explored the role of MRI in assessing lysis. It can be useful for bone loss and provides excellent assessment for soft tissue: abductors, neurovascular structures. Metal artifact reduction sequencing is required to maximise information obtainable. Management of osteolysis: Identification and monitoring periprosthetic osteolysis is a crucial element of patient care. Progressive bone loss leading to loss of fixation and the potential risk for periprosthetic fracture is a real possibility and early recognition and intervention is a priority. The basic Guiding Principles of management are centered around several key elements including the source of osteolysis and degree, the fixation of implant, the location of lysis, the track record of implant system, the presence of patient symptoms (if any), and finally the patient age, activity level, and general health. Specifics of treatment of osteolysis around the acetabulum: With cemented sockets, lysis is typically seen late and frequently at the bone-cement interface. It is often associated with a loose implant and the prime indication for surgery may be pain. Treatment involves implant removal and revision with an uncemented cup and bone grafting or augmentation as needed. With uncemented sockets in the setting of osteolysis, there are several factors to consider. These have been stratified by Rubash, Maloney, and Paprosky. The treatment of these sockets has been summarised as follows: for Type I and Type II with limited lysis, lesional treatment such as debridement and bone grafting with head and polyethylene exchange has been suggested. WATCH for impingement!!!! Graft defects via trap-doors can be performed but make the door big enough to graft. Small doors and grafting through screw holes is at best marginal. In instances of compromised locking mechanisms, consider cementing the liner into the shell. For Type II and Type III implants, revision of the component is recommended. With the currently available cementless cup extraction tools, I rarely hesitate to remove a cup with moderate lysis and a broken locking mechanism: better access to lytic areas, better grafting achieved. CAVEAT #1: the disadvantage of implant removal is that it is clearly a bigger procedure and fixation of the new implant may be more difficult. Risks vs. rewards. CAVEAT #2: Socket revision in the setting of failed MOM implants has some unique “issues”. In the Vancouver series, almost 25% of the revision cups failed to achieve biologic fixation. As such, recommendation for using “enhanced” porous implants during revision seems prudent. Additionally, despite the use of larger diameter heads, instability rates remain high.
Periacetabular osteolysis is seen in response to particles (polyethylene, ceramic, metal or cement), at times in the presence of an unstable implant, and perhaps made worse by the unique host response to the particle burden. The impact of wear modes: due to either the primary bearing surface (MOP, MOM, COC) or unintended surfaces as seen in impingement, as well as the quality of the bearing counterface all influence the extent of the osteolytic response. The final common pathway appears to be via macrophage stimulation, an upregulation of cytokines leading to a resorption of bone. The patterns of lysis range from linear resorption at the implant interface to more expansile patterns which can be more dramatic in size and may place the implant at jeopardy for loosening. Assessment of implant fixation as well as extent of the lytic process employs the use of plain radiographs (including oblique views), computerised tomography and magnetic resonance imaging. The utility of MRI for the quantification of bone loss as well as the newer phenomena of associated soft tissue lesions (pseudotumors, adverse tissue reactions) has turned out to be a valuable tool in helping determine timing and need for revision. The basic principles in determining need for revision surgery revolve around: degree of lysis, integrity of the soft tissues, fixation of the implant, track record of the implant, as well as patient factors including symptoms, age and activity. In cemented sockets, progressive bone loss, pain with or without overt loosening is indication for revision which is generally accomplished using an uncemented hemispherical acetabular component with bone graft and screw augmentation. In the uncemented socket, the decision to revise is based upon a) implant stability, 2) the integrity of the locking mechanism, 3) degree of bone loss. With stable implants, polyethylene exchange and “lesional” treatment is appropriate. Well fixed implants with extensive lysis can be successfully managed with liner exchange and bone grafting as necessary. If the liner locking mechanism is compromised, cementing a liner into place is an excellent strategy. Removing a well fixed cup with extensive lysis runs the risk of encountering a large acetabular defect which may be difficult to reconstruct. Loose implants clearly require revision. In the era of “hard bearings”, progressive soft tissue expansion leading to damage of the abductor and other soft tissue constraints about the hip is an indication for revision. Revision of MOM THR's may be performed by maintaining the femoral component and performing an isolated acetabular revision or in some instances of modular acetabular components, maintaining the shell and inserting a new liner. In all instances of implant retention, it is critical to confirm that the components are in optimised position: implants retained in suboptimal position are at risk for early failure.
Wear and osteolysis are the major problems limiting the longevity of total hip arthroplasty. There is general agreement that if left untreated osteolysis will eventually lead to loosening of the acetabular component. In many cases polyethylene liner exchange may be preferable to revision of a well-fixed acetabular component. If there is osteolysis present the question is when should the polyethylene liner exchange be performed? The answer to that question has not been definitively defined at the present time. There are few studies available that evaluate the timing of surgical intervention when acetabular osteolysis is present. Indications for surgical intervention include prevention of complete wear of the head through the polyethylene liner (liner thickness < 1.5 mm) and when the osteolysis involves 50% or more of the shell circumference on AP or lateral x-rays. Of course persistent pain with wear or osteolysis is another indication for surgery. Contraindications to cup retention and liner exchange include: 1) Malpositioned component; 2) Non-modular component; 3) Unable to obtain hip stability; 4) Thin polyethylene liner (relative); 5) Severe damage to acetabular shell; and 6) Poor track record of the acetabular component. If one decides to retain the component the following steps are generally involved in operative management. Remove the liner and assess component stability. Assess the locking mechanism for the polyethylene. If the locking mechanism is not intact one can consider cementing the liner in place. In general, it is recommended to debride and bone graft the osteolytic lesion. The author prefers to use an access hole at the periphery of the component or at times a trapdoor can be made in the ilium. It is essential not to de-stabilise the acetabular component. At the present time there is no optimal graft material to use. Potential graft options include demineralised bone matrix or cancellous bone chips. Since dislocation is the number one complication after polyethylene liner exchange, it is a good idea to use a larger femoral head whenever possible. In some cases it is also worthwhile to consider bracing the patient after the surgery. It is essential to be ready to perform a complete revision. Therefore, when planning to perform a polyethylene liner exchange one needs to have the appropriate components available to completely revise the acetabular component.
The uncertainty of the biological effects of wear and corrosion from Metal-on-metal (MoM) implants has initiated a debate on their safety and use. Generally, the release of wear particles from MoM hip implants can clinically manifest in aseptic osteolysis. In our study, the effect of MoM-wear particles and particle originated Co and Cr ions on mesenchymal stromal cells (MSCs) was investigated [1]. The lead hypotheses were that (1) dissociated Co and Cr, originated from MoM-wear particles, accumulate in the bone marrow and (2) apparently impair the osteogenic function of local MSCs. This impairment could be one element contributing to the manifestation of periprosthetic osteolyses. The study was approved by the local ethical committee (EA1/194/13); all donors gave written informed consent. Blood (B), Synovial fluid (SF) periprosthetic tissue (PT) and bone marrow (BM) were collected from patients with at least one osteolytic lesion, undergoing a revision of a MoM hip implant. Patients undergoing primary THA served as controls. Metal wear particles were isolated from PT by enzymatic digestion and their size and shape characterized by transmission electron microscopy (TEM). Local and systemic levels of Co and Cr were analyzed by graphite furnace atomic absorption spectroscopy. MoM-MSCs and control-MSCs were isolated from BM for INTRODUCTION
METHODS
With cementless porous-coated acetabular replacements, extensive bone loss can occur without effecting implant stability. As a result, the surgeon is frequently faced with re-operating on a well-fixed cementless acetabular component with osteolysis and must decide whether or not to remove a well-fixed porous coated socket. A classification system and treatment algorithm has been developed to aid in management decisions regarding re-operation for polyethylene wear and pelvic osteolysis. Cases are classified into one of 3 possible categories depending on the radiographic stability of the porous coated shell and the ability to replace the polyethylene liner. Type I case; stable porous coated shell, liner replaceable; Type II case; socket stable, liner not replaceable; Type III case; socket loose, not osseointegrated. Treatment Algorithms - Retain well-fixed shell in Type I cases and replace the liner. Debride accessible lytic lesions and graft with allograft chips. Remove the well-fixed shell in Type II case. Assess defect once the shell is removed. Reconstruction based on the bony defect present. The vast majority can be revised with a larger porous coated socket. Remove loose socket in Type III cases. Assess defect and reconstruct based on the defect. There is a greater need for more extensive grafting and the use of reconstruction rings with Type III cases. This treatment algorithm has helped the authors successfully evaluate and treat a large series of patients with polyethylene wear and pelvic osteolysis in association with porous coated acetabular components. The stability of the acetabular component and appropriate knowledge of the implant are important factors that impact surgical management.
With cementless porous-coated acetabular replacements, extensive bone loss can occur without affecting implant stability. As a result, the surgeon is frequently faced with re-operating on a well-fixed cementless acetabular component with osteolysis and must decide whether or not to remove a well-fixed porous coated socket. A classification system and treatment algorithm has been developed to aid in management decisions regarding re-operation for polyethylene wear and pelvic osteolysis. Cases are classified into one of 3 possible categories depending on the radiographic stability of the porous coated shell and the ability to replace the polyethylene liner. Type I case; stable porous coated shell, liner replaceable; Type II case; socket stable, liner not replaceable; Type III case; socket loose, not osseointegrated Relative Contra-indications for Liner Exchange – Type II Case - Malpositioned socket, Severely damaged shell or lock detail (consider cementing shell in place), Poor track record of the implant, Highly crosslinked polyethylene liner of adequate thickness not available, Ongrowth (as opposed to ingrowth) fixation surface Treatment Algorithm Type I Case: Retain well-fixed shell in Type I cases and replace the liner. Debride accessible lytic lesions and graft with allograft chips. Type II Case: Remove the well-fixed shell in Type II case. Assess defect once the shell is removed. Reconstruction based on the bony defect present. The vast majority can be revised with a larger porous coated socket. Type III Case: Remove loose socket. Assess defect and reconstruct based on the defect. There is a greater need for more extensive grafting and the use of reconstruction rings with Type III cases. This treatment algorithm has helped the authors successfully evaluate and treat a large series of patients with polyethylene wear and pelvic osteolysis in association with porous coated acetabular components. The stability of the acetabular component and appropriate knowledge of the implant are important factors that impact surgical management.
Polyethylene and femoral head exchange for wear or osteolysis is a common operation. The difficulty lies in the facts that wear and osteolysis are difficult to measure, wear does not always correlate with osteolysis, catastrophic failure (wear through, loosening, or fracture) is difficult to predict, and these problems are usually asymptomatic. I currently recommend this procedure when complete wear through of the polyethylene is present or impending, when the patient has obvious wear and symptoms, or if there is a rapidly enlarging osteolytic lesion. The surgical goals focus on management of debris generation and management of the osteolytic lesion. A third goal becomes avoidance of the know complications of this procedure. Management of debris generation basically involves modernising the head and polyethylene. Management of the osteolytic lesion includes debridement and when possible grafting. By far the most common complication after this procedure is dislocation. Prevention of dislocation should be accomplished by patient education, use of larger heads when possible, and capsular repair. Prerequisites to perform this procedure are a replacement liner of adequate thickness that can be locked or cemented in place. The acetabular component must be stable. Lastly the component must be properly oriented to minimise both wear and dislocation. Metal-on-metal liner conversion to metal-on-poly is becoming more common. Since patient satisfaction with THA is high, MoM patients may unknowingly minimise their symptoms because they are minor compared to the symptoms before surgery. The patient history should include specific questions about groin pain, swelling, hip noise, and asking the patient if they notice their hip on a daily basis. Patient symptoms, osteolysis and a pseudotumor are indications for modular conversion. Radiographically stable, well-oriented components that can accept a polyethylene liner are requirements for a successful conversion.
Isolated liner and head exchange procedure has been an established treatment method for polyethylene wear and osteolysis when the acetabular component remains well-fixed. In this study, its mid-term results were evaluated retrospectively in 34 hips. Among the consecutive patients operated upon from September 1995, 2 patients (3 hips) were excluded because of inadequate follow-up and the results of remaining 34 hips of 34 patients were evaluated. They were 20 men and 14 women with a mean age of 49 years at the time of index surgery. Conventional polyethylene liner was used in 26 cases and highly cross-linked polyethylene liner was used in 8 cases. In 3 cases, liner was cemented in the metal shell because compatible liner could not be used. After a minimum follow-up of 5 years (range, 5∼20.2), re-revision surgery was necessary in 10 cases (29.4%); 8 for wear and osteolysis, 2 for acetabular loosening. In all re-revision cases, conventional polyethylene was used. There was no failure in the cases in which highly cross-linked polyethylene was used. There was no case complicated with dislocation. The results of this study suggest more promising results with the use of highly cross-linked polyethylene in isolated liner exchange.
Polyethylene and femoral head exchange for wear or osteolysis is a common operation. The difficulty lies in the facts that wear and osteolysis are difficult to measure, wear does not always correlate with osteolysis, catastrophic failure (wear through, loosening, or fracture) is difficult to predict, and these problems are usually asymptomatic. I currently recommend this procedure when complete wear through of the polyethylene is present or impending, when the patient has obvious wear and symptoms, or if there is a rapidly enlarging osteolytic lesion. The surgical goals focus on management of debris generation and management of the osteolytic lesion. A third goal becomes avoidance of the know complications of this procedure. Management of debris generation basically involves modernising the head and polyethylene. Management of the osteolytic lesion includes debridement and when possible grafting. By far the most common complication after this procedure is dislocation. Prevention of dislocation should be accomplished by patient education, use of larger heads when possible, and capsular repair. Prerequisites to perform this procedure are a replacement liner of adequate thickness that can be locked or cemented in place. The acetabular component must be stable. Lastly the component must be properly oriented to minimise both wear and dislocation. Metal-on-metal liner conversion to metal-on-poly is becoming more common. Since patient satisfaction with THA is high, MoM patients may unknowingly minimise their symptoms because they are minor compared to the symptoms before surgery. The patient history should include specific questions about groin pain, swelling, hip noise, and asking the patient if they notice their hip on a daily basis. Patient symptoms, osteolysis and a pseudotumour are indications for modular conversion. Radiographically stable, well-oriented components that can accept a polyethylene liner are requirements for a successful conversion.Metal-on-metal liner exchanges
Reoperation on the acetabular side of the total hip arthroplasty construct because of acetabular liner wear with or without extensive osteolysis is the most common reoperation performed in revision hip surgery today. The options of revision of the component or component retention, liner exchange (cemented or direct reinsertion) and bone grafting represent a classic surgeon dilemma of choices and compromises. CT scanning is helpful in determining the size and location of osteolytic lesions. My preference is to retain the existing shell when possible especially when there are large osteolytic lesions but where structural support is maintained. The advantages of complete revision are easy access to lytic lesions, ability to change component position and the ability to use contemporary designs with optimal bearing surfaces (for wear and dislocation prevention). The disadvantage is bone disruption including pelvic discontinuity with component removal (less so with Explant Systems) and difficult reconstructions due to excessive bone loss from the osteolytic defects (sometimes requiring cup cages). The advantage of component retention is that structural integrity of the pelvis is maintained and in general, a higher quality polyethylene is utilised. For large lesions I use windows to debride and bone graft the lesions. If the locking mechanism is inadequate, cementing a liner, including a constrained liner in some cases, that has been scored in a spider web configuration provides durable results at 5-year follow-up. The downside to liner exchange is potential instability. We immobilise all liner exchange patients postoperatively.