Background. Heterotopic ossification (HO) is lamellar bone formation in the soft tissues following trauma or joint replacement for osteoarthritis (OA). A genome wide association study of HO patients after total hip arthroplasty for OA has identified Kinesin Family Member 26B (KIF26B) as a gene associated with HO severity. KIF26B has previously been associated with HO in mice. Hypothesis and aims: We hypothesised that Kif26b regulates the osteogenic trans-differentiation of myoblasts; a possible mechanism of HO. Using an in vitro model, we wished to establish whether Kif26b is involved in HO formation and to explore the molecular mechanism. Methods. We developed CRISPR/Cas9 mediated Kif26b knockout (KO) C2C12 myoblasts. Wild type (WT) and KO cells were transdifferentiated towards an osteogenic lineage using BMP-2 for 24 days. The effect of Kif26b KO on mineralisation was quantified by calcium staining. The mean difference (±SEM) in gene expression between WT and KO lines was compared with ANOVA. Results. qPCR and western blotting confirmed Kif26b knockout. Kif26b deficient cells produced substantially less mineral versus WT in response to BMP-2 (34.71% ±3.62%, n=12, P<0.0001). At day 8 of
Multiple drilling is reported to be an effective treatment for osteonecrosis of the head of femur, but its effect on intra-osseous pressure has not been described. We undertook multiple drilling and recorded the intra-osseous pressure in 75 osteonecrotic hips in 60 patients with a mean age of 42 years (19 to 67). At a mean follow-up of 37.1 months (24 to 60), 42 hips (56%) had a clinically successful outcome. The procedure was effective in reducing the mean intra-osseous pressure from 57 mmHg (SD 22) to 16 mmHg (SD 9). Hips with a successful outcome had a mean pressure of 26 mmHg (SD 19). It was less effective in preventing progression of osteonecrosis in hips with considerable involvement and in those with a high intra-osseous pressure in the intertrochanteric region (mean 45 mmHg (SD 25)). This study is not able to answer whether a return of the intra-osseous pressure to normal levels is required for satisfactory healing.