Achieving durable implant–host bone fixation is the major challenge in uncemented revision hip arthroplasty when significant bone stock deficiencies are encountered. The purpose of this study was to develop an experimental model which would simulate the clinical revision hip scenario and to determine the effects of alendronate coating on porous tantalum on gap filling and bone ingrowth in the experimental model. Thirty-six porous tantalum plugs were implanted into the distal femur, bilaterally of 18 rabbits for four weeks. There were 3 groups of plugs inserted; control groups of porous tantalum plugs (Ta) with no coating, a 2nd control group of porous tantalum plugs with micro-porous calcium phosphate coating, (Ta-CaP) and porous tantalum plugs coated with alendronate (Ta-CaP-ALN). Subcutaneous fluorochrome labelling was used to track new bone formation. Bone formation was analysed by backscattered electron microscopy and fluorescence microscopy on undecalcified histological sections.Introduction
Methods
Bioabsorbable screws for anterior cruciate ligament reconstruction (ACLR) have been shown to be associated with femoral tunnel widening and cyst formation. To compare a poly-L-lactide–hydroxyapatite screw (PLLA-HA) with a titanium screw with respect to clinical and radiological outcomes over a 5 year period. 40 patients were equally randomized into 2 groups (PLLA-HA vs titanium) and ACLR performed with a 4 strand hamstring graft with femoral tunnel drilling via the anteromedial portal. Evaluation at 2 and 5 years was performed using the International Knee Documentation Committee assessment (IKDC), Lysholm knee score, KT 1000 arthrometer, single-legged hop test. Magnetic resonance imaging was used to evaluate tunnel and screw volume, ossification around the screws, graft integration and cyst formation. There was no difference in any clinical outcome measure at 2 or 5 years between the 2 groups. At 2 years, the PLLA-HA femoral tunnel was significantly smaller than the titanium screw tunnel (p=0.015) and at 5 years, there was no difference. At 2 years the femoral PLLA-HA screw was a mean 76% of its original volume and by 5 years, 36%. At 2 years the tibial PLLA-HA screw mean volume was 68% of its original volume and by 5 years, 46%. At 5 years, 88% of femoral tunnels and 56% of tibial tunnels demonstrated a significant ossification response. There was no increase in cyst formation in the PLLA-HA group and no screw breakages. The PLLA-HA screw provides adequate aperture fixation in ACLR with excellent functional outcomes. It was not associated with femoral tunnel widening or increased cyst formation when compared with the titanium screw. The resorbtion characteristics appear favourable and the hydroxyapatite component of the screw may stimulate
Background. The management of non-unions of subtrochanteric femoral fractures with associated implant failure is challenging. This study assessed the outcome of a cohort of patients treated according to the diamond concept. Methods. Between 2005–2010 all patients with subtrochanteric aseptic non-unions presented post implant failure (Gamma Nail breakage) were eligible in the absence of severe systemic pathologies and comorbidities. Demographics, initial fracture pattern, method of stabilisation, mode of failure of metal work, time to revision of fixation, complications, time to union, and functional outcome were recorded over a minimum period of follow-up of 12 months. The revision strategy was based on the “diamond concept;” optimising the mechanical and biological environment (revision of fixation, osteoinduction/BMP-7,